Nano- and Microfiber PVB Patches as Natural Oil Carriers for Atopic Skin Treatment
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
33225238
PubMed Central
PMC7672701
DOI
10.1021/acsabm.0c00854
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Atopic dermatitis (eczema) is a widespread disorder, with researchers constantly looking for more efficacious treatments. Natural oils are reported to be an effective therapy for dry skin, and medical textiles can be used as an alternative or supporting therapy. In this study, fibrous membranes from poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) with low and high molecular weights were manufactured to obtain nano- and micrometer fibers via electrospinning for the designed patches used as oil carriers for atopic skin treatment. The biocompatibility of PVB patches was analyzed using proliferation tests and scanning electron microscopy (SEM), which combined with a focused ion beam (FIB) allowed for the 3D visualization of patches. The oil spreading tests with evening primrose, black cumin seed, and borage were verified with cryo-SEM, which showed the advantage nanofibers have over microfibers as carriers for low-viscosity oils. The skin tests expressed the usability and the enhanced oil delivery performance for electrospun patches. We demonstrate that through the material nano- and microstructure, commercially available polymers such as PVB have great potential to be deployed as a biomaterial in medical applications, such as topical treatments for chronic skin conditions.
Institute of Hydrodynamics of the Czech Academy of Sciences Prague 16612 Czech Republic
School of Engineering and Materials Science Queen Mary University of London London E1 4NS U K
See more in PubMed
Hay R. J.; Johns N. E.; Williams H. C.; Bolliger I. W.; Dellavalle R. P.; Margolis D. J.; Marks R.; Naldi L.; Weinstock M. A.; Wulf S. K.; Michaud C.; J.L. Murray C.; Naghavi M. The Global Burden of Skin Disease in 2010: An Analysis of the Prevalence and Impact of Skin Conditions. J. Invest. Dermatol. 2014, 134, 1527–1534. 10.1038/jid.2013.446. PubMed DOI
Spergel J.; Paller A. S. Atopic Dermatitis and the Atopic March. J. Clin. Immunol. 2003, 112, S118–S127. 10.1016/j.jaci.2003.09.033. PubMed DOI
Leung D. Y. M.; Nomura I.; Hamid Q. A.; Leung D. Y. M.; Boguniewicz M.; Howell M. D.; Nomura I.; Hamid Q. A. New Insights into Atopic Dermatitis. J. Clin. Invest. 2004, 113, 651–657. 10.1172/jci21060. PubMed DOI PMC
Kusari A.; Han A. M.; Schairer D.; Eichenfield L. F. Atopic Dermatitis: New Developments. Dermatol. Clin. 2019, 37, 11–20. 10.1016/j.det.2018.07.003. PubMed DOI
Foster R. H.; Hardy G.; Alany R. G. Borage Oil in the Treatment of Atopic Dermatitis. Nutrition 2010, 26, 708–718. 10.1016/j.nut.2009.10.014. PubMed DOI
Hon K. L.; Kung J. S. C.; Ng W. G. G.; Leung T. F. Emollient treatment of atopic dermatitis: latest evidence and clinical considerations. Drugs Context 2018, 7, 1–14. 10.7573/dic.212530. PubMed DOI PMC
Wallach D.; Taïeb A. Atopic Dermatitis/Atopic Eczema. Chem. Immunol. Allergy 2014, 100, 81–96. 10.1159/000358606. PubMed DOI
Goodyear H. M.; Harper J. I. “Wet wrap” dressings for eczema: an effective treatment but not to be misused. Br. J. Dermatol. 2002, 146, 159.10.1046/j.1365-2133.2002.04485.x. PubMed DOI
Mihranyan A.; Ferraz N.; Strømme M. Current Status and Future Prospects of Nanotechnology in Cosmetics. Prog. Mater. Sci. 2012, 57, 875–910. 10.1016/j.pmatsci.2011.10.001. DOI
Kenry; Lim T. C. Progress in Polymer Science Nanofiber Technology : Current Status and Emerging Developments. Prog. Polym. Sci. 2017, 70, 1–17. 10.1016/j.progpolymsci.2017.03.002. DOI
Li D.; Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel?. Adv. Mater. 2004, 16, 1151–1170. 10.1002/adma.200400719. DOI
Bhattacharyya I.; Molaro M. C.; Braatz R. D.; Rutledge G. C. Free Surface Electrospinning of Aqueous Polymer Solutions from a Wire Electrode. Chem. Eng. J. 2016, 289, 203–211. 10.1016/j.cej.2015.12.067. DOI
Zahedi P.; Rezaeian I.; Ranaei-Siadat S.-O.; Jafari S.-H.; Supaphol P. A Review on Wound Dressings with an Emphasis on Electrospun Nanofibrous Polymeric Bandages. Polym. Adv. Technol. 2010, 21, 77–95. 10.1002/pat.1625. DOI
Keirouz A.; Chung M.; Kwon J.; Fortunato G.; Radacsi N. 2D and 3D Electrospinning Technologies for the Fabrication of Nanofibrous Scaffolds for Skin Tissue Engineering: A Review. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2020, 12, e1626.10.1002/wnan.1626. PubMed DOI
Fridrikh S. V.; Yu J. H.; Brenner M. P.; Rutledge G. C. Controlling the Fiber Diameter during Electrospinning. Phys. Rev. Lett. 2003, 90, 144502.10.1103/PhysRevLett.90.144502. PubMed DOI
Yang Z.; Peng H.; Wang W.; Liu T. Crystallization Behavior of Poly(ε-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. 10.1002/app.31787. DOI
Theron S. A.; Zussman E.; Yarin A. L. Experimental Investigation of the Governing Parameters in the Electrospinning of Polymer Solutions. Polymer 2004, 45, 2017–2030. 10.1016/j.polymer.2004.01.024. DOI
Stachewicz U.; Szewczyk P. K.; Kruk A.; Barber A. H.; Czyrska-Filemonowicz A. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Mater. Sci. Eng. C 2019, 95, 397–408. 10.1016/j.msec.2017.08.076. PubMed DOI
Stachewicz U.; Qiao T.; Rawlinson S. C. F.; Almeida F. V.; Li W.-Q.; Cattell M.; Barber A. H. 3D Imaging of Cell Interactions with Electrospun PLGA Nanofiber Membranes for Bone Regeneration. Acta Biomater. 2015, 27, 88–100. 10.1016/j.actbio.2015.09.003. PubMed DOI
Stachewicz U.; Bailey R. J.; Zhang H.; Stone C. A.; Willis C. R.; Barber A. H. Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks. ACS Appl. Mater. Interfaces 2015, 7, 16645–16652. 10.1021/acsami.5b04272. PubMed DOI
Akhtar N.; Adnan Q.; Ahmad M.; Mehmood A.; Farzana K. Rheological Studies and Characterization of Different Oils. J. Chem. Soc. Pak. 2009, 31, 201–206.
Sarbatly R.; Krishnaiah D.; Kamin Z. A Review of Polymer Nanofibres by Electrospinning and Their Application in Oil-Water Separation for Cleaning up Marine Oil Spills. Mar. Pollut. Bull. 2016, 106, 8–16. 10.1016/j.marpolbul.2016.03.037. PubMed DOI
Kaur N.; Chugh V.; Gupta A. K. Essential Fatty Acids as Functional Components of Foods- a Review. J. Food Sci. Technol. 2014, 51, 2289–2303. 10.1007/s13197-012-0677-0. PubMed DOI PMC
Kanehara S.; Ohtani T.; Uede K.; Furukawa F. Clinical Effects of Undershirts Coated with Borage Oil on Children with Atopic Dermatitis: A Double-Blind, Placebo-Controlled Clinical Trial. J. Dermatol. 2007, 34, 811–815. 10.1111/j.1346-8138.2007.00391.x. PubMed DOI
Lovell C. R.; Burton J. L.; Horrobin D. F. Treatment of atopic eczema with evening primrose oil. Lancet 1981, 317, 278.10.1016/s0140-6736(81)92119-x. PubMed DOI
Gehring W.; Bopp R.; Rippke F.; Gloor M. Effect of Topically Applied Evening Primrose Oil on Epidermal Barrier Function in Atopic Dermatitis as a Function of Vehicle. Arzneim.-Forsch./Drug Res. 1999, 49, 635–642. 10.1055/s-0031-1300475. PubMed DOI
Yoon S.; Lee J.; Lee S. The Therapeutic Effect of Evening Primrose Oil in Atopic Dermatitis Patients with Dry Scaly Skin Lesions Is Associated with the Normalization of Serum Gamma-Interferon Levels. Skin Pharmacol. Appl. Skin Physiol. 2002, 15, 20–25. 10.1159/000049385. PubMed DOI
Yousefi M.; Barikbin B.; Kamalinejad M.; Abolhasani E.; Ebadi A.; Younespour S.; Manouchehrian M.; Hejazi S. Comparison of Therapeutic Effect of Topical Nigella with Betamethasone and Eucerin in Hand Eczema. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1498–1504. 10.1111/jdv.12033. PubMed DOI
Eid A. M.; Elmarzugi N. A.; Ayyash L. M. A.; Sawafta M. N.; Daana H. I. A Review on the Cosmeceutical and External Applications of Nigella Sativa. J. Trop. Med. 2017, 2017, 1–6. 10.1155/2017/7092514. PubMed DOI PMC
Lio P. A. Non-Pharmacologic Therapies for Atopic Dermatitis. Curr. Allergy Asthma Rep. 2013, 13, 528–538. 10.1007/s11882-013-0371-y. PubMed DOI
Wang W.; Hui P. C. L.; Kan C. Functionalized Textile Based Therapy for the Treatment of Atopic Dermatitis. Coatings 2017, 7, 82.10.3390/coatings7060082. DOI
Hemati Azandaryani A.; Derakhshandeh K.; Arkan E. Electrospun Nanobandage for Hydrocortisone Topical Delivery as an Antipsoriasis Candidate. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 677–685. 10.1080/00914037.2017.1375493. DOI
Oehr C. Plasma Surface Modification of Polymers for Biomedical Use. Nucl. Instrum. Methods Phys. Res., Sect. B 2003, 208, 40–47. 10.1016/S0168-583X(03)00650-5. DOI
Park S.-B.; Lih E.; Park K.-S.; Joung Y. K.; Han D. K. Biopolymer-Based Functional Composites for Medical Applications. Prog. Polym. Sci. 2017, 68, 77–105. 10.1016/j.progpolymsci.2016.12.003. DOI
Wu L.; Gu Y.; Liu L.; Tang J.; Mao J.; Xi K.; Jiang Z.; Zhou Y.; Xu Y.; Deng L.; Chen L.; Cui W. Hierarchical Micro/Nanofibrous Membranes of Sustained Releasing VEGF for Periosteal Regeneration. Biomaterials 2020, 227, 119555.10.1016/j.biomaterials.2019.119555. PubMed DOI
Ruediger T.; Berg A.; Guellmar A.; Rode C.; Schnabelrauch M.; Urbanek A.; Wagner K.; Wyrwa R.; Kinne R. W.; Sigusch B. W. Cytocompatibility of Polymer-Based Periodontal Bone Substitutes in Gingival Fibroblast and MC3T3 Osteoblast Cell Cultures. Dent. Mater. 2012, 28, e239–e249. 10.1016/j.dental.2012.05.008. PubMed DOI
Costa L. C.; Ambrósio J. D. Influence of Poly(Vinyl Butyral) on the Dynamic-Mechanical and Mechanical Properties of Polypropylene/Wood Flour Composites. Mater. Sci. Forum 2014, 775–776, 593–598. 10.4028/www.scientific.net/MSF.775-776.593. DOI
Tang D.; Yuan R.; Chai Y.; Dai J.; Zhong X.; Liu Y. A Novel Immunosensor Based on Immobilization of Hepatitis B Surface Antibody on Platinum Electrode Modified Colloidal Gold and Polyvinyl Butyral as Matrices via Electrochemical Impedance Spectroscopy. Bioelectrochemistry 2004, 65, 15–22. 10.1016/j.bioelechem.2004.05.004. PubMed DOI
Nguyen F. N.; Berg J. C. The Effect of Vinyl Alcohol Content on Adhesion Performance in Poly (Vinyl Butyral)/Glass Systems. J. Adhes. Sci. Technol. 2004, 18, 1011–1026. 10.1163/1568561041257469. DOI
Duser A. V.; Jagota A.; Bennison S. J. Analysis of Glass/Polyvinyl Butyral Laminates Subjected to Uniform Pressure. J. Eng. Mech. 1999, 125, 425–435. 10.1061/(ASCE)0733-9399(1999)125:4(435). DOI
Yener F.; Jirsak O.; Gemci R. Using a Range of PVB Spinning Solution to Acquire Diverse Morphology for Electrospun Nanofibres. Iran. J. Chem. Chem. Eng. 2012, 31, 49–58.
Posavec D.; Dorsch A.; Bogner U.; Bernhardt G.; Nagl S. Polyvinyl Butyral Nanobeads: Preparation, Characterization, Biocompatibility and Cancer Cell Uptake. Microchim. Acta 2011, 173, 391–399. 10.1007/s00604-011-0573-8. DOI
Chui C.-Y.; Mouthuy P.-A.; Ye H. Direct Electrospinning of Poly (Vinyl Butyral) onto Human Dermal Fibroblasts Using a Portable Device. Biotechnol. Lett. 2018, 40, 737–744. 10.1007/s10529-018-2522-7. PubMed DOI PMC
Peer P.; Stenicka M.; Pavlinek V.; Filip P.; Kuritka I.; Brus J. An Electrorheological Investigation of PVB Solutions in Connection with Their Electrospinning Qualities. Polym. Test. 2014, 39, 115–121. 10.1016/j.polymertesting.2014.07.016. DOI
Peer P.; Stenicka M.; Pavlinek V.; Filip P. The Storage Stability of Polyvinylbutyral Solutions from an Electrospinnability Standpoint. Polym. Degrad. Stab. 2014, 105, 134–139. 10.1016/j.polymdegradstab.2014.04.015. DOI
Wu H.; Zhang R.; Sun Y.; Lin D.; Sun Z.; Pan W.; Downs P. Biomimetic Nanofiber Patterns with Controlled Wettability. Soft Matter 2008, 4, 2429–2433. 10.1039/b805570j. DOI
Yalcinkaya; Komarek Polyvinyl Butyral (PVB) Nanofiber/Nanoparticle-Covered Yarns for Antibacterial Textile Surfaces. Int. J. Mol. Sci. 2019, 20, 4317.10.3390/ijms20174317. PubMed DOI PMC
Lubasova D.; Martinova L. Controlled Morphology of Porous Polyvinyl Butyral Nanofibers. J. Nanomater. 2011, 2011, 1.10.1155/2011/292516. PubMed DOI
Koski A.; Yim K.; Shivkumar S. Effect of Molecular Weight on Fibrous PVA Produced by Electrospinning. Mater. Lett. 2004, 58, 493–497. 10.1016/S0167-577X(03)00532-9. DOI
Szewczyk P.; Ura D.; Metwally S.; Knapczyk-Korczak J.; Gajek M.; Marzec M.; Bernasik A.; Stachewicz U. Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes. Polymers 2019, 11, 34.10.3390/polym11010034. PubMed DOI PMC
Bouillaguet S.; Shaw L.; Gonzalez L.; Wataha J. C.; Krejci I. Long-Term Cytotoxicity of Resin-Based Dental Restorative Materials. J. Oral Rehabil. 2002, 29, 7–13. 10.1046/j.1365-2842.2002.00804.x. PubMed DOI
Bazou D.; Coakley W. T.; Hayes A. J.; Jackson S. K. Long-Term Viability and Proliferation of Alginate-Encapsulated 3-D HepG2 Aggregates Formed in an Ultrasound Trap. Toxicol. in Vitro 2008, 22, 1321–1331. 10.1016/j.tiv.2008.03.014. PubMed DOI
Eichhorn S. J.; Sampson W. W. Relationships between Specific Surface Area and Pore Size in Electrospun Polymer Fibre Networks. J. R. Soc. Interface 2010, 7, 641–649. 10.1098/rsif.2009.0374. PubMed DOI PMC
Kunzler T. P.; Drobek T.; Schuler M.; Spencer N. D. Systematic Study of Osteoblast and Fibroblast Response to Roughness by Means of Surface-Morphology Gradients. Biomaterials 2007, 28, 2175–2182. 10.1016/j.biomaterials.2007.01.019. PubMed DOI
Sahasrabudhe S. N.; Rodriguez-Martinez V.; O’Meara M.; Farkas B. E. Density, Viscosity, and Surface Tension of Five Vegetable Oils at Elevated Temperatures: Measurement and Modeling. Int. J. Food Prop. 2017, 20, 1965–1981. 10.1080/10942912.2017.1360905. DOI
Lin J.; Shang Y.; Ding B.; Yang J.; Yu J.; Al-deyab S. S. Nanoporous Polystyrene Fibers for Oil Spill Cleanup. Mar. Pollut. Bull. 2012, 64, 347–352. 10.1016/j.marpolbul.2011.11.002. PubMed DOI
Lee M. W.; An S.; Latthe S. S.; Lee C.; Hong S.; Yoon S. S. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil. ACS Appl. Mater. Interfaces 2013, 5, 10597–10604. 10.1021/am404156k. PubMed DOI