• This record comes from PubMed

Nano- and Microfiber PVB Patches as Natural Oil Carriers for Atopic Skin Treatment

. 2020 Nov 16 ; 3 (11) : 7666-7676. [epub] 20200818

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Atopic dermatitis (eczema) is a widespread disorder, with researchers constantly looking for more efficacious treatments. Natural oils are reported to be an effective therapy for dry skin, and medical textiles can be used as an alternative or supporting therapy. In this study, fibrous membranes from poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate) (PVB) with low and high molecular weights were manufactured to obtain nano- and micrometer fibers via electrospinning for the designed patches used as oil carriers for atopic skin treatment. The biocompatibility of PVB patches was analyzed using proliferation tests and scanning electron microscopy (SEM), which combined with a focused ion beam (FIB) allowed for the 3D visualization of patches. The oil spreading tests with evening primrose, black cumin seed, and borage were verified with cryo-SEM, which showed the advantage nanofibers have over microfibers as carriers for low-viscosity oils. The skin tests expressed the usability and the enhanced oil delivery performance for electrospun patches. We demonstrate that through the material nano- and microstructure, commercially available polymers such as PVB have great potential to be deployed as a biomaterial in medical applications, such as topical treatments for chronic skin conditions.

See more in PubMed

Hay R. J.; Johns N. E.; Williams H. C.; Bolliger I. W.; Dellavalle R. P.; Margolis D. J.; Marks R.; Naldi L.; Weinstock M. A.; Wulf S. K.; Michaud C.; J.L. Murray C.; Naghavi M. The Global Burden of Skin Disease in 2010: An Analysis of the Prevalence and Impact of Skin Conditions. J. Invest. Dermatol. 2014, 134, 1527–1534. 10.1038/jid.2013.446. PubMed DOI

Spergel J.; Paller A. S. Atopic Dermatitis and the Atopic March. J. Clin. Immunol. 2003, 112, S118–S127. 10.1016/j.jaci.2003.09.033. PubMed DOI

Leung D. Y. M.; Nomura I.; Hamid Q. A.; Leung D. Y. M.; Boguniewicz M.; Howell M. D.; Nomura I.; Hamid Q. A. New Insights into Atopic Dermatitis. J. Clin. Invest. 2004, 113, 651–657. 10.1172/jci21060. PubMed DOI PMC

Kusari A.; Han A. M.; Schairer D.; Eichenfield L. F. Atopic Dermatitis: New Developments. Dermatol. Clin. 2019, 37, 11–20. 10.1016/j.det.2018.07.003. PubMed DOI

Foster R. H.; Hardy G.; Alany R. G. Borage Oil in the Treatment of Atopic Dermatitis. Nutrition 2010, 26, 708–718. 10.1016/j.nut.2009.10.014. PubMed DOI

Hon K. L.; Kung J. S. C.; Ng W. G. G.; Leung T. F. Emollient treatment of atopic dermatitis: latest evidence and clinical considerations. Drugs Context 2018, 7, 1–14. 10.7573/dic.212530. PubMed DOI PMC

Wallach D.; Taïeb A. Atopic Dermatitis/Atopic Eczema. Chem. Immunol. Allergy 2014, 100, 81–96. 10.1159/000358606. PubMed DOI

Goodyear H. M.; Harper J. I. “Wet wrap” dressings for eczema: an effective treatment but not to be misused. Br. J. Dermatol. 2002, 146, 159.10.1046/j.1365-2133.2002.04485.x. PubMed DOI

Mihranyan A.; Ferraz N.; Strømme M. Current Status and Future Prospects of Nanotechnology in Cosmetics. Prog. Mater. Sci. 2012, 57, 875–910. 10.1016/j.pmatsci.2011.10.001. DOI

Kenry; Lim T. C. Progress in Polymer Science Nanofiber Technology : Current Status and Emerging Developments. Prog. Polym. Sci. 2017, 70, 1–17. 10.1016/j.progpolymsci.2017.03.002. DOI

Li D.; Xia Y. Electrospinning of Nanofibers: Reinventing the Wheel?. Adv. Mater. 2004, 16, 1151–1170. 10.1002/adma.200400719. DOI

Bhattacharyya I.; Molaro M. C.; Braatz R. D.; Rutledge G. C. Free Surface Electrospinning of Aqueous Polymer Solutions from a Wire Electrode. Chem. Eng. J. 2016, 289, 203–211. 10.1016/j.cej.2015.12.067. DOI

Zahedi P.; Rezaeian I.; Ranaei-Siadat S.-O.; Jafari S.-H.; Supaphol P. A Review on Wound Dressings with an Emphasis on Electrospun Nanofibrous Polymeric Bandages. Polym. Adv. Technol. 2010, 21, 77–95. 10.1002/pat.1625. DOI

Keirouz A.; Chung M.; Kwon J.; Fortunato G.; Radacsi N. 2D and 3D Electrospinning Technologies for the Fabrication of Nanofibrous Scaffolds for Skin Tissue Engineering: A Review. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2020, 12, e1626.10.1002/wnan.1626. PubMed DOI

Fridrikh S. V.; Yu J. H.; Brenner M. P.; Rutledge G. C. Controlling the Fiber Diameter during Electrospinning. Phys. Rev. Lett. 2003, 90, 144502.10.1103/PhysRevLett.90.144502. PubMed DOI

Yang Z.; Peng H.; Wang W.; Liu T. Crystallization Behavior of Poly(ε-Caprolactone)/Layered Double Hydroxide Nanocomposites. J. Appl. Polym. Sci. 2010, 116, 2658–2667. 10.1002/app.31787. DOI

Theron S. A.; Zussman E.; Yarin A. L. Experimental Investigation of the Governing Parameters in the Electrospinning of Polymer Solutions. Polymer 2004, 45, 2017–2030. 10.1016/j.polymer.2004.01.024. DOI

Stachewicz U.; Szewczyk P. K.; Kruk A.; Barber A. H.; Czyrska-Filemonowicz A. Pore shape and size dependence on cell growth into electrospun fiber scaffolds for tissue engineering: 2D and 3D analyses using SEM and FIB-SEM tomography. Mater. Sci. Eng. C 2019, 95, 397–408. 10.1016/j.msec.2017.08.076. PubMed DOI

Stachewicz U.; Qiao T.; Rawlinson S. C. F.; Almeida F. V.; Li W.-Q.; Cattell M.; Barber A. H. 3D Imaging of Cell Interactions with Electrospun PLGA Nanofiber Membranes for Bone Regeneration. Acta Biomater. 2015, 27, 88–100. 10.1016/j.actbio.2015.09.003. PubMed DOI

Stachewicz U.; Bailey R. J.; Zhang H.; Stone C. A.; Willis C. R.; Barber A. H. Wetting Hierarchy in Oleophobic 3D Electrospun Nanofiber Networks. ACS Appl. Mater. Interfaces 2015, 7, 16645–16652. 10.1021/acsami.5b04272. PubMed DOI

Akhtar N.; Adnan Q.; Ahmad M.; Mehmood A.; Farzana K. Rheological Studies and Characterization of Different Oils. J. Chem. Soc. Pak. 2009, 31, 201–206.

Sarbatly R.; Krishnaiah D.; Kamin Z. A Review of Polymer Nanofibres by Electrospinning and Their Application in Oil-Water Separation for Cleaning up Marine Oil Spills. Mar. Pollut. Bull. 2016, 106, 8–16. 10.1016/j.marpolbul.2016.03.037. PubMed DOI

Kaur N.; Chugh V.; Gupta A. K. Essential Fatty Acids as Functional Components of Foods- a Review. J. Food Sci. Technol. 2014, 51, 2289–2303. 10.1007/s13197-012-0677-0. PubMed DOI PMC

Kanehara S.; Ohtani T.; Uede K.; Furukawa F. Clinical Effects of Undershirts Coated with Borage Oil on Children with Atopic Dermatitis: A Double-Blind, Placebo-Controlled Clinical Trial. J. Dermatol. 2007, 34, 811–815. 10.1111/j.1346-8138.2007.00391.x. PubMed DOI

Lovell C. R.; Burton J. L.; Horrobin D. F. Treatment of atopic eczema with evening primrose oil. Lancet 1981, 317, 278.10.1016/s0140-6736(81)92119-x. PubMed DOI

Gehring W.; Bopp R.; Rippke F.; Gloor M. Effect of Topically Applied Evening Primrose Oil on Epidermal Barrier Function in Atopic Dermatitis as a Function of Vehicle. Arzneim.-Forsch./Drug Res. 1999, 49, 635–642. 10.1055/s-0031-1300475. PubMed DOI

Yoon S.; Lee J.; Lee S. The Therapeutic Effect of Evening Primrose Oil in Atopic Dermatitis Patients with Dry Scaly Skin Lesions Is Associated with the Normalization of Serum Gamma-Interferon Levels. Skin Pharmacol. Appl. Skin Physiol. 2002, 15, 20–25. 10.1159/000049385. PubMed DOI

Yousefi M.; Barikbin B.; Kamalinejad M.; Abolhasani E.; Ebadi A.; Younespour S.; Manouchehrian M.; Hejazi S. Comparison of Therapeutic Effect of Topical Nigella with Betamethasone and Eucerin in Hand Eczema. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1498–1504. 10.1111/jdv.12033. PubMed DOI

Eid A. M.; Elmarzugi N. A.; Ayyash L. M. A.; Sawafta M. N.; Daana H. I. A Review on the Cosmeceutical and External Applications of Nigella Sativa. J. Trop. Med. 2017, 2017, 1–6. 10.1155/2017/7092514. PubMed DOI PMC

Lio P. A. Non-Pharmacologic Therapies for Atopic Dermatitis. Curr. Allergy Asthma Rep. 2013, 13, 528–538. 10.1007/s11882-013-0371-y. PubMed DOI

Wang W.; Hui P. C. L.; Kan C. Functionalized Textile Based Therapy for the Treatment of Atopic Dermatitis. Coatings 2017, 7, 82.10.3390/coatings7060082. DOI

Hemati Azandaryani A.; Derakhshandeh K.; Arkan E. Electrospun Nanobandage for Hydrocortisone Topical Delivery as an Antipsoriasis Candidate. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 677–685. 10.1080/00914037.2017.1375493. DOI

Oehr C. Plasma Surface Modification of Polymers for Biomedical Use. Nucl. Instrum. Methods Phys. Res., Sect. B 2003, 208, 40–47. 10.1016/S0168-583X(03)00650-5. DOI

Park S.-B.; Lih E.; Park K.-S.; Joung Y. K.; Han D. K. Biopolymer-Based Functional Composites for Medical Applications. Prog. Polym. Sci. 2017, 68, 77–105. 10.1016/j.progpolymsci.2016.12.003. DOI

Wu L.; Gu Y.; Liu L.; Tang J.; Mao J.; Xi K.; Jiang Z.; Zhou Y.; Xu Y.; Deng L.; Chen L.; Cui W. Hierarchical Micro/Nanofibrous Membranes of Sustained Releasing VEGF for Periosteal Regeneration. Biomaterials 2020, 227, 119555.10.1016/j.biomaterials.2019.119555. PubMed DOI

Ruediger T.; Berg A.; Guellmar A.; Rode C.; Schnabelrauch M.; Urbanek A.; Wagner K.; Wyrwa R.; Kinne R. W.; Sigusch B. W. Cytocompatibility of Polymer-Based Periodontal Bone Substitutes in Gingival Fibroblast and MC3T3 Osteoblast Cell Cultures. Dent. Mater. 2012, 28, e239–e249. 10.1016/j.dental.2012.05.008. PubMed DOI

Costa L. C.; Ambrósio J. D. Influence of Poly(Vinyl Butyral) on the Dynamic-Mechanical and Mechanical Properties of Polypropylene/Wood Flour Composites. Mater. Sci. Forum 2014, 775–776, 593–598. 10.4028/www.scientific.net/MSF.775-776.593. DOI

Tang D.; Yuan R.; Chai Y.; Dai J.; Zhong X.; Liu Y. A Novel Immunosensor Based on Immobilization of Hepatitis B Surface Antibody on Platinum Electrode Modified Colloidal Gold and Polyvinyl Butyral as Matrices via Electrochemical Impedance Spectroscopy. Bioelectrochemistry 2004, 65, 15–22. 10.1016/j.bioelechem.2004.05.004. PubMed DOI

Nguyen F. N.; Berg J. C. The Effect of Vinyl Alcohol Content on Adhesion Performance in Poly (Vinyl Butyral)/Glass Systems. J. Adhes. Sci. Technol. 2004, 18, 1011–1026. 10.1163/1568561041257469. DOI

Duser A. V.; Jagota A.; Bennison S. J. Analysis of Glass/Polyvinyl Butyral Laminates Subjected to Uniform Pressure. J. Eng. Mech. 1999, 125, 425–435. 10.1061/(ASCE)0733-9399(1999)125:4(435). DOI

Yener F.; Jirsak O.; Gemci R. Using a Range of PVB Spinning Solution to Acquire Diverse Morphology for Electrospun Nanofibres. Iran. J. Chem. Chem. Eng. 2012, 31, 49–58.

Posavec D.; Dorsch A.; Bogner U.; Bernhardt G.; Nagl S. Polyvinyl Butyral Nanobeads: Preparation, Characterization, Biocompatibility and Cancer Cell Uptake. Microchim. Acta 2011, 173, 391–399. 10.1007/s00604-011-0573-8. DOI

Chui C.-Y.; Mouthuy P.-A.; Ye H. Direct Electrospinning of Poly (Vinyl Butyral) onto Human Dermal Fibroblasts Using a Portable Device. Biotechnol. Lett. 2018, 40, 737–744. 10.1007/s10529-018-2522-7. PubMed DOI PMC

Peer P.; Stenicka M.; Pavlinek V.; Filip P.; Kuritka I.; Brus J. An Electrorheological Investigation of PVB Solutions in Connection with Their Electrospinning Qualities. Polym. Test. 2014, 39, 115–121. 10.1016/j.polymertesting.2014.07.016. DOI

Peer P.; Stenicka M.; Pavlinek V.; Filip P. The Storage Stability of Polyvinylbutyral Solutions from an Electrospinnability Standpoint. Polym. Degrad. Stab. 2014, 105, 134–139. 10.1016/j.polymdegradstab.2014.04.015. DOI

Wu H.; Zhang R.; Sun Y.; Lin D.; Sun Z.; Pan W.; Downs P. Biomimetic Nanofiber Patterns with Controlled Wettability. Soft Matter 2008, 4, 2429–2433. 10.1039/b805570j. DOI

Yalcinkaya; Komarek Polyvinyl Butyral (PVB) Nanofiber/Nanoparticle-Covered Yarns for Antibacterial Textile Surfaces. Int. J. Mol. Sci. 2019, 20, 4317.10.3390/ijms20174317. PubMed DOI PMC

Lubasova D.; Martinova L. Controlled Morphology of Porous Polyvinyl Butyral Nanofibers. J. Nanomater. 2011, 2011, 1.10.1155/2011/292516. PubMed DOI

Koski A.; Yim K.; Shivkumar S. Effect of Molecular Weight on Fibrous PVA Produced by Electrospinning. Mater. Lett. 2004, 58, 493–497. 10.1016/S0167-577X(03)00532-9. DOI

Szewczyk P.; Ura D.; Metwally S.; Knapczyk-Korczak J.; Gajek M.; Marzec M.; Bernasik A.; Stachewicz U. Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes. Polymers 2019, 11, 34.10.3390/polym11010034. PubMed DOI PMC

Bouillaguet S.; Shaw L.; Gonzalez L.; Wataha J. C.; Krejci I. Long-Term Cytotoxicity of Resin-Based Dental Restorative Materials. J. Oral Rehabil. 2002, 29, 7–13. 10.1046/j.1365-2842.2002.00804.x. PubMed DOI

Bazou D.; Coakley W. T.; Hayes A. J.; Jackson S. K. Long-Term Viability and Proliferation of Alginate-Encapsulated 3-D HepG2 Aggregates Formed in an Ultrasound Trap. Toxicol. in Vitro 2008, 22, 1321–1331. 10.1016/j.tiv.2008.03.014. PubMed DOI

Eichhorn S. J.; Sampson W. W. Relationships between Specific Surface Area and Pore Size in Electrospun Polymer Fibre Networks. J. R. Soc. Interface 2010, 7, 641–649. 10.1098/rsif.2009.0374. PubMed DOI PMC

Kunzler T. P.; Drobek T.; Schuler M.; Spencer N. D. Systematic Study of Osteoblast and Fibroblast Response to Roughness by Means of Surface-Morphology Gradients. Biomaterials 2007, 28, 2175–2182. 10.1016/j.biomaterials.2007.01.019. PubMed DOI

Sahasrabudhe S. N.; Rodriguez-Martinez V.; O’Meara M.; Farkas B. E. Density, Viscosity, and Surface Tension of Five Vegetable Oils at Elevated Temperatures: Measurement and Modeling. Int. J. Food Prop. 2017, 20, 1965–1981. 10.1080/10942912.2017.1360905. DOI

Lin J.; Shang Y.; Ding B.; Yang J.; Yu J.; Al-deyab S. S. Nanoporous Polystyrene Fibers for Oil Spill Cleanup. Mar. Pollut. Bull. 2012, 64, 347–352. 10.1016/j.marpolbul.2011.11.002. PubMed DOI

Lee M. W.; An S.; Latthe S. S.; Lee C.; Hong S.; Yoon S. S. Electrospun Polystyrene Nanofiber Membrane with Superhydrophobicity and Superoleophilicity for Selective Separation of Water and Low Viscous Oil. ACS Appl. Mater. Interfaces 2013, 5, 10597–10604. 10.1021/am404156k. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...