A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
FV10409
Ministerstvo Průmyslu a Obchodu
FV40421
Ministerstvo Průmyslu a Obchodu
PubMed
31968692
PubMed Central
PMC7013497
DOI
10.3390/ma13020493
PII: ma13020493
Knihovny.cz E-zdroje
- Klíčová slova
- membrane, nanomaterial, oil separation, self-cleaning, surface modification,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cleaning of wastewater for the environment is an emerging issue for the living organism. The separation of oily wastewater, especially emulsified mixtures, is quite challenged due to a large amount of wastewater produced in daily life. In this review, the membrane technology for oily wastewater treatment is presented. In the first part, the global membrane market, the oil spill accidents and their results are discussed. In the second and third parts, the source of oily wastewater and conventional treatment methods are represented. Among all methods, membrane technology is considered the most efficient method in terms of high separation performance and easy to operation process. In the fourth part, we provide an overview of membrane technology, fouling problem, and how to improve the self-cleaning surface using functional groups for effectively treating oily wastewater. The recent development of surface-modified membranes for oily wastewater separation is investigated. It is believed that this review will promote understanding of membrane technology and the development of surface modification strategies for anti-fouling membranes.
Zobrazit více v PubMed
World population projected to reach 9.8 billion in 2050, and 11.2 billion in 2100. [(accessed on 18 July 2019)]; Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2017.html.
Membrane Microfiltration Market: Size, Trend, and Research Report. [(accessed on 4 November 2019)]; Available online: https://www.bccresearch.com/market-research/membrane-and-separation-technology/membrane-microfiltration.html.
Nanofiltration Membrane Market by Type (Polymeric, Inorganic, and Hybrid) and Application (Water & Wastewater Treatment, Food & Beverages, Chemical & Petrochemicals, Pharmaceutical & Biomedical, and Others): Global Opportunity Analysis and Industry Forecast, 2018–2025. [(accessed on 17 January 2020)]; Available online: https://www.alliedmarketresearch.com/nanofiltration-membranes-market.
Reportlinker The Global Nanofiltration Membrane Market Size is Expected to Reach $845.2 Million by 2025, Rising at a Market Growth of 5.3% CAGR during the Forecast Period. [(accessed on 4 November 2019)]; Available online: https://www.prnewswire.com/news-releases/the-global-nanofiltration-membrane-market-size-is-expected-to-reach-845-2-million-by-2025--rising-at-a-market-growth-of-5-3-cagr-during-the-forecast-period-300920884.html.
Ultrafiltration Membrane Filtration Market Size to Grow at 3.5%+ CAGR to Reach US$ 2920 Mn by 2025. [(accessed on 4 November 2019)]; Available online: https://www.marketwatch.com/press-release/ultrafiltration-membrane-filtration-market-size-to-grow-at-35-cagr-to-reach-us-2920-mn-by-2025-2019-04-30.
Microfiltration Membrane Market Size, Share 2019 Growth Analysis by Manufacturers, Regions, Type and Application, Forecast Analysis to 2024. [(accessed on 4 November 2019)]; Available online: https://www.marketwatch.com/press-release/microfiltration-membrane-market-size-share-2019-growth-analysis-by-manufacturers-regions-type-and-application-forecast-analysis-to-2024-2019-10-21.
Microfiltration Membrane Market 2019 Research Report by Manufacturers Analysis, Base, Sales Area and Its Competitors. [(accessed on 4 November 2019)]; Available online: http://dentonobserver.com/microfiltration-membrane-market-2019-research-report-by-manufacturers-analysis-base-sales-area-and-its-competitors/42196/
Ultrafiltration Membrane Filtration Market 2019 Global Industry Insights by Global Share, Emerging Trends, Regional Analysis, Segments, Prime Players, Drivers, Growth Factor and Foreseen till 2024. [(accessed on 4 November 2019)]; Available online: https://www.marketwatch.com/press-release/ultrafiltration-membrane-filtration-market-2019-global-industry-insights-by-global-share-emerging-trends-regional-analysis-segments-prime-players-drivers-growth-factor-and-foreseen-till-2024-2019-10-25.
Ultrafiltration Membrane Market Size, Share 2019 Global Industry Growth, Historical Analysis, Trends, Emerging Factors, Demands, Key Players, Emerging Technologies and Potential of Industry Till 2024. [(accessed on 4 November 2019)]; Available online: https://www.nbc29.com/story/41042704/ultrafiltration-membrane-market-size-share-2019-global-industry-growth-historical-analysis-trends-emerging-factors-demands-key-players-emerging.
Nanofiltration Membrane Market 2019: Global Industry Overview by Size, Share, Future Growth, Development, Revenue, Top Key Players Analysis and Growth Factors up to 2024. [(accessed on 4 November 2019)]; Available online: https://www.marketwatch.com/press-release/nanofiltration-membrane-market-2019-global-industry-overview-by-size-share-future-growth-development-revenue-top-key-players-analysis-and-growth-factors-up-to-2024-2019-09-11.
Reverse Osmosis (RO) Membrane Market 2019: Global Industry Overview By Size, Share, Trends, Growth Factors, Historical Analysis, Opportunities and Industry Segments Poised for Rapid Growth by 2025. [(accessed on 4 November 2019)]; Available online: https://www.marketwatch.com/press-release/reverse-osmosis-ro-membrane-market-2019-global-industry-overview-by-size-share-trends-growth-factors-historical-analysis-opportunities-and-industry-segments-poised-for-rapid-growth-by-2025-2019-10-16.
The United Nations world Water Development Report, 2017: Wastewater: The Untapped Resource—UNESCO Digital Library. [(accessed on 18 July 2019)]; Available online: https://unesdoc.unesco.org/ark:/48223/pf0000247153.
Patton J.S., Rigler M.W., Boehm P.D., Fiest D.L. Ixtoc 1 oil spill: Flaking of surface mousse in the Gulf of Mexico. Nature. 1981;290:235. doi: 10.1038/290235a0. DOI
Horn S.A., Neal C.P. The atlantic empress sinking—A large spill without environmental disaster. Int. Oil Spill Conf. Proc. 1981;1981:429–435. doi: 10.7901/2169-3358-1981-1-429. DOI
Fayad N.M. Identification of tar balls following the nowruz oil spill. Mar. Environ. Res. 1986;18:155–163. doi: 10.1016/0141-1136(86)90030-9. DOI
History|Environmental Science & Technology Oil Biodegradation and Bioremediation: A Tale of the Two Worst Spills in U.S. [(accessed on 18 July 2019)]; Available online: https://pubs.acs.org/doi/10.1021/es2013227. PubMed DOI PMC
Islam M.N., Taki G., Jung Y.-J., Jung S.-K., Park J.-H. Remediation of Gulf War Oil Spill Contaminated Soil by a Subcritical Water Extraction Process: Oil Removal, Recovery, and Degradation. Soil Sediment Contam. Int. J. 2018;27:120–130. doi: 10.1080/15320383.2018.1432563. DOI
Crude Calamities—The Biggest Offshore Oil Spill Disasters. [(accessed on 4 November 2019)];Offshore Technology Oil Gas News. 2014 Available online: https://www.offshore-technology.com/features/featurecrude-calamities-the-biggest-offshore-oil-spill-disasters-4365600/
Macías-Zamora J.V. Chapter 19—Ocean Pollution. In: Letcher T.M., Vallero D.A., editors. Waste: A Handbook for Management. Academic Press; Cambridge, MA, USA: 2011. pp. 265–279.
Jing B., Wang H., Lin K.-Y., McGinn P.J., Na C., Zhu Y. A facile method to functionalize engineering solid membrane supports for rapid and efficient oil–water separation. Polymer. 2013;54:5771–5778. doi: 10.1016/j.polymer.2013.08.030. DOI
Shi F., Wu J., Zhao B. Preparation and Investigation of Intelligent Polymeric Nanocapsule for Enhanced Oil Recovery. Materials. 2019;12:1093. doi: 10.3390/ma12071093. PubMed DOI PMC
Ong C.S., Lau W.J., Goh P.S., Ng B.C., Ismail A.F. Preparation and characterization of PVDF–PVP–TiO2 composite hollow fiber membranes for oily wastewater treatment using submerged membrane system. Desalin. Water Treat. 2015;53:1213–1223.
Shen S.S., Liu K.P., Yang J.J., Li Y., Bai R.B., Zhou X.J. Application of a triblock copolymer additive modified polyvinylidene fluoride membrane for effective oil/water separation. R. Soc. Open Sci. 2018;5:171979. doi: 10.1098/rsos.171979. PubMed DOI PMC
Khan M.Z., Baheti V., Militky J., Ali A., Vikova M. Superhydrophobicity, UV protection and oil/water separation properties of fly ash/Trimethoxy(octadecyl)silane coated cotton fabrics. Carbohydr. Polym. 2018;202:571–580. doi: 10.1016/j.carbpol.2018.08.145. PubMed DOI
Fan L., Yan J., He H., Deng N., Zhao Y., Kang W., Cheng B. Electro-blown spun PS/PAN fibrous membrane for highly efficient oil/water separation. Fibers Polym. 2017;18:1988–1994. doi: 10.1007/s12221-017-7429-8. DOI
Li J., Xu C., Tian H., Zha F., Qi W., Wang Q. Blend-electrospun poly(vinylidene fluoride)/stearic acid membranes for efficient separation of water-in-oil emulsions. Colloids Surf. Physicochem. Eng. Asp. 2018;538:494–499. doi: 10.1016/j.colsurfa.2017.11.043. DOI
Khulbe K.C., Feng C., Matsuura T. The art of surface modification of synthetic polymeric membranes. J. Appl. Polym. Sci. 2010;115:855–895. doi: 10.1002/app.31108. DOI
Venault A., Chang C.-Y., Tsai T.-C., Chang H.-Y., Bouyer D., Lee K.-R., Chang Y. Surface zwitterionization of PVDF VIPS membranes for oil and water separation. J. Membr. Sci. 2018;563:54–64. doi: 10.1016/j.memsci.2018.05.049. DOI
Cheng Z., Lai H., Du Y., Fu K., Hou R., Zhang N., Sun K. Underwater Superoleophilic to Superoleophobic Wetting Control on the Nanostructured Copper Substrates. ACS Appl. Mater. Interfaces. 2013;5:11363–11370. doi: 10.1021/am403595z. PubMed DOI
Laitinen O., Suopajärvi T., Österberg M., Liimatainen H. Hydrophobic, Superabsorbing Aerogels from Choline Chloride-Based Deep Eutectic Solvent Pretreated and Silylated Cellulose Nanofibrils for Selective Oil Removal. ACS Appl. Mater. Interfaces. 2017;9:25029–25037. doi: 10.1021/acsami.7b06304. PubMed DOI
Yu L., Han M., He F. A review of treating oily wastewater. Arab. J. Chem. 2017;10:S1913–S1922. doi: 10.1016/j.arabjc.2013.07.020. DOI
Abd El-Gawad S.H. Oil and Grease Removal from Industrial Wastewater Using New Utility Approach. [(accessed on 17 December 2019)]; Available online: https://www.hindawi.com/journals/aec/2014/916878/
Rocha e Silva F.C.P., Rocha e Silva N.M.P., Luna J.M., Rufino R.D., Santos V.A., Sarubbo L.A. Dissolved air flotation combined to biosurfactants: A clean and efficient alternative to treat industrial oily water. Rev. Environ. Sci. Biotechnol. 2018;17:591–602. doi: 10.1007/s11157-018-9477-y. DOI
Jiang S., Hue R., Wu J. Research on Oil and Gas Ecological Compensation Mechanism. Chem. Technol. Fuels Oils. 2019;55:85–92. doi: 10.1007/s10553-019-01006-8. DOI
Cui J., Zhou Z., Xie A., Meng M., Cui Y., Liu S., Lu J., Zhou S., Yan Y., Dong H. Bio-inspired fabrication of superhydrophilic nanocomposite membrane based on surface modification of SiO2 anchored by polydopamine towards effective oil-water emulsions separation. Sep. Purif. Technol. 2019;209:434–442. doi: 10.1016/j.seppur.2018.03.054. DOI
Coca J., Gutiérrez G., Benito J. Treatment of Oily Wastewater. In: Coca-Prados J., Gutiérrez-Cervelló G., editors. Water Purification and Management. Springer; Dordrecht, The Netherlands: 2011. pp. 1–55.
Jiménez S., Micó M.M., Arnaldos M., Medina F., Contreras S. State of the art of produced water treatment. Chemosphere. 2018;192:186–208. doi: 10.1016/j.chemosphere.2017.10.139. PubMed DOI
Sylvester N.D., Byeseda J.J. Oil/Water Separation by Induced-Air Flotation. Soc. Pet. Eng. J. 1980;20:579–590. doi: 10.2118/7886-PA. DOI
Fakhru’l-Razi A., Pendashteh A., Abdullah L.C., Biak D.R.A., Madaeni S.S., Abidin Z.Z. Review of technologies for oil and gas produced water treatment. J. Hazard. Mater. 2009;170:530–551. doi: 10.1016/j.jhazmat.2009.05.044. PubMed DOI
Investigation of the Electrocoagulation Treatment Technique for the Separation of Oil from Wastewater—SciAlert Responsive Version. [(accessed on 22 July 2019)]; Available online: https://scialert.net/fulltextmobile/?doi=jest.2016.62.74.
Wang Y., Zhou Y., Cai L., Guo J., Xu Y., Zhang H., Ji L., Song W. Facile Preparation of Charcoal Nanomaterial from Fishery Waste with Remarkable Adsorption Ability. Materials. 2019;12:1318. doi: 10.3390/ma12081318. PubMed DOI PMC
Use of Bamboo Fiber in Oil Water Separation. [(accessed on 27 November 2019)]; Available online: https://pdfs.semanticscholar.org/0d0d/332b4f68fb1d2c231a219bc4b4dab4080421.pdf?_ga=2.264746767.145427989.1579241814-423646240.1547185454.
Wu A.J., Li X.D., Yang J., Yan J.H. Synthesis and characterization of a plasma carbon aerosol coated sponge for recyclable and efficient separation and adsorption. RSC Adv. 2017;7:9303–9308. doi: 10.1039/C6RA26275A. DOI
Wang Q., Yu M., Chen G., Chen Q., Tai J. Facile Fabrication of Superhydrophobic/Superoleophilic Cotton for Highly Efficient Oil/Water Separation. BioResources. 2017;12:643–654. doi: 10.15376/biores.12.1.643-654. DOI
Ma W., Zhang Q., Hua D., Xiong R., Zhao J., Rao W., Huang S., Zhan X., Chen F., Huang C. Electrospun fibers for oil–water separation. RSC Adv. 2016;6:12868–12884. doi: 10.1039/C5RA27309A. DOI
Padaki M., Surya Murali R., Abdullah M.S., Misdan N., Moslehyani A., Kassim M.A., Hilal N., Ismail A.F. Membrane technology enhancement in oil–water separation. A review. Desalination. 2015;357:197–207. doi: 10.1016/j.desal.2014.11.023. DOI
Yalcinkaya F. A review on advanced nanofiber technology for membrane distillation. J. Eng. Fibers Fabr. 2019;14:1–12. doi: 10.1177/1558925018824901. DOI
Koros W.J., Ma Y.H., Shimidzu T. Terminology for membranes and membrane processes (IUPAC Recommendations 1996) Pure Appl. Chem. 1996;68:1479–1489. doi: 10.1351/pac199668071479. DOI
Khan S.J., Hankins N.P., Shen L.-C. Chapter 11—Submerged and Attached Growth Membrane Bioreactors and Forward Osmosis Membrane Bioreactors for Wastewater Treatment. In: Hankins N.P., Singh R., editors. Emerging Membrane Technology for Sustainable Water Treatment. Elsevier; Boston, MA, USA: 2016. pp. 277–296.
Jiang S., Li Y., Ladewig B.P. A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ. 2017;595:567–583. doi: 10.1016/j.scitotenv.2017.03.235. PubMed DOI
Zoubeik M., Salama A., Henni A. Investigation of Oily Wastewater Filtration Using Polymeric Membranes: Experimental Verification of the Multicontinuum Modeling Approach. Ind. Eng. Chem. Res. 2018;57:11452–11464. doi: 10.1021/acs.iecr.8b02529. DOI
Le-Clech P., Lee E.-K., Chen V. Hybrid photocatalysis/membrane treatment for surface waters containing low concentrations of natural organic matters. Water Res. 2006;40:323–330. doi: 10.1016/j.watres.2005.11.011. PubMed DOI
Linsebigler A.L., Lu G., Yates J.T. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. Rev. 1995;95:735–758. doi: 10.1021/cr00035a013. DOI
Yalcinkaya F., Siekierka A., Bryjak M. Preparation of Fouling-Resistant Nanofibrous Composite Membranes for Separation of Oily Wastewater. Polymers. 2017;9:679. doi: 10.3390/polym9120679. PubMed DOI PMC
Fatma Y., Siekierka A., Bryjak M., Maryska J. Preparation of various nanofibrous composite membranes using wire electrospinning for oil-water separation. IOP Conf. Ser. Mater. Sci. Eng. 2017;254:102011. doi: 10.1088/1757-899X/254/10/102011. DOI
Laohaprapanon S., Vanderlipe A.D., Doma B.T., Jr., You S.-J. Self-cleaning and antifouling properties of plasma-grafted poly(vinylidene fluoride) membrane coated with ZnO for water treatment. J. Taiwan Inst. Chem. Eng. 2017;70:15–22. doi: 10.1016/j.jtice.2016.10.019. DOI
Madaeni S.S., Ghaemi N. Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J. Membr. Sci. 2007;303:221–233. doi: 10.1016/j.memsci.2007.07.017. DOI
Zhu Y., Wang D., Jiang L., Jin J. Recent progress in developing advanced membranes for emulsified oil/water separation. NPG Asia Mater. 2014;6:e101. doi: 10.1038/am.2014.23. DOI
Venault A., Liu Y.-H., Wu J.-R., Yang H.-S., Chang Y., Lai J.-Y., Aimar P. Low-biofouling membranes prepared by liquid-induced phase separation of the PVDF/polystyrene-b-poly (ethylene glycol) methacrylate blend. J. Membr. Sci. 2014;450:340–350. doi: 10.1016/j.memsci.2013.09.004. DOI
Cheng B., Li Z., Li Q., Ju J., Kang W., Naebe M. Development of smart poly(vinylidene fluoride)-graft-poly(acrylic acid) tree-like nanofiber membrane for pH-responsive oil/water separation. J. Membr. Sci. 2017;534:1–8. doi: 10.1016/j.memsci.2017.03.053. DOI
He K., Duan H., Chen G.Y., Liu X., Yang W., Wang D. Cleaning of Oil Fouling with Water Enabled by Zwitterionic Polyelectrolyte Coatings: Overcoming the Imperative Challenge of Oil–Water Separation Membranes. ACS Nano. 2015;9:9188–9198. doi: 10.1021/acsnano.5b03791. PubMed DOI
Yu Q., Zhang W., Zhao X., Cao G., Liu F., Di X., Yang H., Wang Y., Wang C. A Simple, Green Method to Fabricate Composite Membranes for Effective Oil-in-Water Emulsion Separation. Polymers. 2018;10:323. PubMed PMC
Zhao X., Su Y., Chen W., Peng J., Jiang Z. Grafting perfluoroalkyl groups onto polyacrylonitrile membrane surface for improved fouling release property. J. Membr. Sci. 2012;415–416:824–834. doi: 10.1016/j.memsci.2012.05.075. DOI
Boyraz E., Yalcinkaya F., Hruza J., Maryska J. Surface-Modified Nanofibrous PVDF Membranes for Liquid Separation Technology. Materials. 2019;12:2702. doi: 10.3390/ma12172702. PubMed DOI PMC
Su Y., Zhao Q., Liu J., Zhao J., Li Y., Jiang Z. Improved oil/water emulsion separation performance of PVC/CPVC blend ultrafiltration membranes by fluorination treatment. Desalin. Water Treat. 2015;55:304–314. doi: 10.1080/19443994.2014.918903. DOI
Li Y., Su Y., Zhao X., He X., Zhang R., Zhao J., Fan X., Jiang Z. Antifouling, High-Flux Nanofiltration Membranes Enabled by Dual Functional Polydopamine. ACS Appl. Mater. Interfaces. 2014;6:5548–5557. doi: 10.1021/am405990g. PubMed DOI
Anderson M.A., Gieselmann M.J., Xu Q. Titania and alumina ceramic membranes. J. Membr. Sci. 1988;39:243–258. doi: 10.1016/S0376-7388(00)80932-1. DOI
Molinari R., Mungari M., Drioli E., Di Paola A., Loddo V., Palmisano L., Schiavello M. Study on a photocatalytic membrane reactor for water purification. Catal. Today. 2000;55:71–78. doi: 10.1016/S0920-5861(99)00227-8. DOI
Ma N., Quan X., Zhang Y., Chen S., Zhao H. Integration of separation and photocatalysis using an inorganic membrane modified with Si-doped TiO2 for water purification. J. Membr. Sci. 2009;335:58–67. doi: 10.1016/j.memsci.2009.02.040. DOI
Damodar R.A., You S.-J., Chou H.-H. Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes. J. Hazard. Mater. 2009;172:1321–1328. doi: 10.1016/j.jhazmat.2009.07.139. PubMed DOI
Xie A., Cui J., Yang J., Chen Y., Dai J., Lang J., Li C., Yan Y. Photo-Fenton self-cleaning membranes with robust flux recovery for an efficient oil/water emulsion separation. J. Mater. Chem. A. 2019;7:8491–8502. doi: 10.1039/C9TA00521H. DOI
Richardson S.D. Disinfection by-products and other emerging contaminants in drinking water. TrAC Trends Anal. Chem. 2003;22:666–684. doi: 10.1016/S0165-9936(03)01003-3. DOI
Al-Abri M., Al-Ghafri B., Bora T., Dobretsov S., Dutta J., Castelletto S., Rosa L., Boretti A. Chlorination disadvantages and alternative routes for biofouling control in reverse osmosis desalination. NPJ Clean Water. 2019;2:1–16. doi: 10.1038/s41545-018-0024-8. DOI
Biomimetic Silicification on Membrane Surface for Highly Efficient Treatments of Both Oil-in-Water Emulsion and Protein Wastewater. [(accessed on 4 November 2019)]; Available online: https://pubs.acs.org/doi/pdf/10.1021/acsami.8b09218. PubMed DOI
Mao H., Qiu M., Bu J., Chen X., Verweij H., Fan Y. Self-Cleaning Piezoelectric Membrane for Oil-in-Water Separation. ACS Appl. Mater. Interfaces. 2018;10:18093–18103. doi: 10.1021/acsami.8b03951. PubMed DOI