Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review

. 2021 Mar 10 ; 13 (6) : . [epub] 20210310

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33801897

Grantová podpora
. CZ.02.1.01/0.0/0.0/16_019/0000843 Ministerstvo školství, mládeže a tělovýchovy

Membrane fouling is one of the main drawbacks encountered during the practical application of membrane separation processes. Cleaning of a membrane is important to reduce fouling and improve membrane performance. Accordingly, an effective cleaning method is currently of crucial importance for membrane separation processes in water treatment. To clean the fouling and improve the overall efficiency of membranes, deep research on the cleaning procedures is needed. So far, physical, chemical, or combination techniques have been used for membrane cleaning. In the current work, we critically reviewed the fouling mechanisms affecting factors of fouling such as the size of particle or solute; membrane microstructure; the interactions between membrane, solute, and solvent; and porosity of the membrane and also examined cleaning methods of microfiltration (MF) membranes such as physical cleaning and chemical cleaning. Herein, we mainly focused on the chemical cleaning process. Factors affecting the chemical cleaning performance, including cleaning time, the concentration of chemical cleaning, and temperature of the cleaning process, were discussed in detail. This review is carried out to enable a better understanding of the membrane cleaning process for an effective membrane separation process.

Zobrazit více v PubMed

Adeleye A.S., Conway J.R., Garner K., Huang Y., Su Y., Keller A.A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016;286:640–662. doi: 10.1016/j.cej.2015.10.105. DOI

Nageeb M. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. Org. Pollut. Monit. Risk Treat. 2013;30:167–194. doi: 10.5772/54048. DOI

Comninellis C., Kapalka A., Malato S.A., Parsons S., Poulios I., Mantzavinos D. Advanced oxidation processes for water treatment: Advances and trends for R&D. J. Chem. Technol. Biotechnol. 2008;83:769–776. doi: 10.1002/jctb.1873. DOI

Petrovic M., Radjenovic J., Barcelo D. Advanced oxidation processes (AOPs) applied for wastewater and drinking water treatment. Elimination of pharmaceuticals. Holist. Approach Environ. 2011;1:63–74.

Andreozzi R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today. 1999;53:51–59. doi: 10.1016/S0920-5861(99)00102-9. DOI

Martínez-Huitle C.A., Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 2006;35:1324–1340. doi: 10.1039/B517632H. PubMed DOI

Bauer R., Fallmann H. The Photo-Fenton Oxidation—A cheap and efficient wastewater treatment method. Res. Chem. Intermed. 1997;23:341–354. doi: 10.1163/156856797X00565. DOI

Friedmann D., Mendive C.B., Bahnemann D.W. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B Environ. 2010;99:398–406. doi: 10.1016/j.apcatb.2010.05.014. DOI

Vidal A. Developments in solar photocatalysis for water purification. Chemosphere. 1998;36:2593–2606. doi: 10.1016/S0045-6535(97)10221-1. PubMed DOI

Lee S.-Y., Park S.-J. TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 2013;19:1761–1769. doi: 10.1016/j.jiec.2013.07.012. DOI

Bouwer E.J., Crowe P.B. Biological Processes in Drinking Water Treatment. J. Am. Water Work. Assoc. 1988;80:82–93. doi: 10.1002/j.1551-8833.1988.tb03103.x. DOI

Crini G., Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019;17:145–155. doi: 10.1007/s10311-018-0785-9. DOI

Chaplin B.P. Advantages, Disadvantages, and Future Challenges of the Use of Electrochemical Technologies for Water and Wastewater Treatment. Elsevier BV; Oxford, UK: 2018. pp. 451–494.

Amuda O.S., Amoo I.A. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. Hazard. Mater. 2007;141:778–783. doi: 10.1016/j.jhazmat.2006.07.044. PubMed DOI

Tzoupanos N.D., Zouboulis A.I. Coagulation-flocculation processes in water/wastewater treatment: The application of new generation of chemical reagents; Proceedings of the 6th IASME/WSEAS Int. Conf. on Heat Transfer, Thermal Engineering And Environment (HTE 8); Rhodes Island, Greece. 20–22 August 2009; pp. 309–317.

Madaeni S.S., Yeganeh M.K. Microfiltration of Emulsified Oil Wastewater. J. Porous Mater. 2003;10:131–138. doi: 10.1023/A:1026035830187. DOI

El-Ghaffar M.A.A., Tieama H.A. A Review of Membranes Classifications, Configurations, Surface Modifications, Characteristics and Its Applications in Water Purification. Chem. Biomol. Eng. 2017;2:57–82. doi: 10.11648/J.CBE.20170202.11. DOI

Yalcinkaya F., Boyraz E., Maryska J., Kucerova K. A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment. Materials. 2020;13:493. doi: 10.3390/ma13020493. PubMed DOI PMC

Li C., Sun W., Lu Z., Ao X., Li S. Ceramic nanocomposite membranes and membrane fouling: A review. Water Res. 2020;175:115674. doi: 10.1016/j.watres.2020.115674. PubMed DOI

Zirehpour A. Nanostructured Polymer Membranes. Vol. 2. John Wiley & Sons Ltd.; London, UK: 2016. Rahimpour, A. Membranes for wastewater treatment; pp. 159–207.

Baker R.W. Membrane Technology and Applications. John Wiley & Sons Ltd.; London, UK: 2004. Membrane technology and applications; pp. 275–299.

Grant R. Membrane Separations. Mater. Manuf. Process. 1989;4:483–503. doi: 10.1080/10426918908956311. DOI

Urošević T., Povrenović D., Vukosavljević P., Urošević I., Stevanović S. Recent developments in microfiltration and ultrafiltration of fruit juices. Food Bioprod. Process. 2017;106:147–161. doi: 10.1016/j.fbp.2017.09.009. DOI

Li P., Zhang S., Lv Y., Ma G., Zuo X. Fouling mechanism and control strategy of inorganic membrane. E3S Web Conf. 2020;194:04047. doi: 10.1051/e3sconf/202019404047. DOI

Huang S., Ras R.H., Tian X. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr. Opin. Colloid Interface Sci. 2018;36:90–109. doi: 10.1016/j.cocis.2018.02.002. DOI

Devanadera M., Dalida M. Fouling of Ceramic Microfiltration Membrane by Soluble Algal Organic Matter (Saom) from Chlorella Sp. and Aeruginosa M. and its Mitigation Using Feed-Pretreatment; Proceedings of the 14 th International Conference on Environmental Science and Technology; Rhodes, Greece. 3–5 September 2015.

Sioutopoulos D., Karabelas A., Mappas V. Membrane Fouling Due to Protein—Polysaccharide Mixtures in Dead-End Ultrafiltration; the Effect of Permeation Flux on Fouling Resistance. Membranes. 2019;9:21. doi: 10.3390/membranes9020021. PubMed DOI PMC

Dickhout J., Moreno J., Biesheuvel P., Boels L., Lammertink R., de Vos W. Produced water treatment by membranes: A review from a colloidal perspective. J. Colloid Interface Sci. 2017;487:523–534. doi: 10.1016/j.jcis.2016.10.013. PubMed DOI

Bazin M.M., Nakamura Y., Ahmad N. Chemical Cleaning of Microfiltration Ceramic Membrane Fouled by Nom. J. Teknol. 2018;80:95–103. doi: 10.11113/jt.v80.12156. DOI

He Z., Miller D.J., Kasemset S., Paul D.R., Freeman B.D. The effect of permeate flux on membrane fouling during microfiltration of oily water. J. Membr. Sci. 2017;525:25–34. doi: 10.1016/j.memsci.2016.10.002. DOI

Jepsen K.L., Bram M.V., Pedersen S., Yang Z. Membrane Fouling for Produced Water Treatment: A Review Study from a Process Control Perspective. Water. 2018;10:847. doi: 10.3390/w10070847. DOI

France T.C., Bot F., Kelly A.L., Crowley S.V., O’Mahony J.A. The influence of temperature on filtration performance and fouling during cold microfiltration of skim milk. Sep. Purif. Technol. 2021;262:118256. doi: 10.1016/j.seppur.2020.118256. DOI

Kujawa J., Chrzanowska E., Kujawski W. Transport properties and fouling issues of membranes utilized for the concentration of dairy products by air-gap membrane distillation and microfiltration. Chem. Pap. 2018;73:565–582. doi: 10.1007/s11696-018-0615-3. DOI

Garmsiri E., Rasouli Y., Abbasi M., Izadpanah A.A. Chemical cleaning of mullite ceramic microfiltration membranes which are fouled during oily wastewater treatment. J. Water Process. Eng. 2017;19:81–95. doi: 10.1016/j.jwpe.2017.07.012. DOI

Kimura K., Honoki D., Sato T. Effective physical cleaning and adequate membrane flux for direct membrane filtration (DMF) of municipal wastewater: Up-concentration of organic matter for efficient energy recovery. Sep. Purif. Technol. 2017;181:37–43. doi: 10.1016/j.seppur.2017.03.005. DOI

Shahbazi Z., Mirsaeedghazi H., Paghaleh A.S. Selection of the most effective chemical cleaning procedure in the membrane clarification of pomegranate juice. J. Food Process. Preserv. 2021;45 doi: 10.1111/jfpp.15195. DOI

Bazan M., Carpintero-Tepole V., La Fuente E.B.-D., Drioli E., Ascanio G. On the use of ultrasonic dental scaler tips as cleaning technique of microfiltration ceramic membranes. Ultrasonics. 2020;101:106035. doi: 10.1016/j.ultras.2019.106035. PubMed DOI

Lam Z., Anlauf H., Nirschl H. High-Pressure Jet Cleaning of Polymeric Microfiltration Membranes. Chem. Eng. Technol. 2019;43:457–464. doi: 10.1002/ceat.201900449. DOI

Zhang B., Yu S., Zhu Y., Shen Y., Gao X., Shi W., Tay J.H. Efficiencies and mechanisms of the chemical cleaning of fouled polytetrafluoroethylene (PTFE) membranes during the microfiltration of alkali/surfactant/polymer flooding oilfield wastewater. RSC Adv. 2019;9:36940–36950. doi: 10.1039/C9RA06745K. PubMed DOI PMC

Lee H., Kang J.-S., Kim H., Lee S. Salt cleaning of EfOM-fouled MF membrane for wastewater reclamation. Desalination Water Treat. 2020;180:55–66. doi: 10.5004/dwt.2020.25149. DOI

Holman S.R., Ohlinger K.N. An Evaluation of Fouling Potential and Methods to Control Fouling in Microfiltration Membranes for Secondary Wastewater Effluent. Proc. Water Environ. Fed. 2007;2007:6417–6444. doi: 10.2175/193864707787223907. DOI

Li H., Chen V. Membrane Fouling and Cleaning in Food and Bioprocessing. Elsevier BV; Oxford, UK: 2010. pp. 213–254.

Ulbricht M., Ansorge W., Danielzik I., König M., Schuster O. Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of polyphenols and polysaccharides. Sep. Purif. Technol. 2009;68:335–342. doi: 10.1016/j.seppur.2009.06.004. DOI

Paugam L., Delaunay D., Diagne N.W., Rabiller-Baudry M. Cleaning of skim milk PES ultrafiltration membrane: On the real effect of nitric acid step. J. Membr. Sci. 2013;428:275–280. doi: 10.1016/j.memsci.2012.10.013. DOI

Maskooki A., Kobayashi T., Mortazavi S.A., Maskooki A. Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes. Sep. Purif. Technol. 2008;59:67–73. doi: 10.1016/j.seppur.2007.05.028. DOI

Kelly S.T., Zydney A.L. Mechanisms for BSA fouling during microfiltration. J. Membr. Sci. 1995;107:115–127. doi: 10.1016/0376-7388(95)00108-O. DOI

Liu C., Caothien S., Hayes J., Caothuy T., Otoyo T., Ogawa T. Membrane Chemical Cleaning: From Art to Science; Proceedings of the AWWA Membrane Technology Conference; San Antonio, TX, USA. 4–7 March 2001; Mar 7, 2001.

Koonani H., Amirinejad M. Combined three mechanisms models for membrane fouling during microfiltration. J. Membr. Sci. Res. 2019;5:274–282. doi: 10.22079/jmsr.2019.95781.1224. DOI

Zhang M., Liao B.-Q., Zhou X., He Y., Hong H., Lin H., Chen J. Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. Bioresour. Technol. 2015;175:59–67. doi: 10.1016/j.biortech.2014.10.058. PubMed DOI

Doan H., Lohi A. Fouling in Membrane Filtration and Remediation Methods. Mass Transf. Adv. Sustain. Energy Environ. Oriented Numer. Modeling. 2013;195 doi: 10.5772/52370. DOI

Kumar R., Ismail A.F. Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.42042. DOI

Salahi A., Abbasi M., Mohammadi T. Permeate flux decline during UF of oily wastewater: Experimental and modeling. Desalination. 2010;251:153–160. doi: 10.1016/j.desal.2009.08.006. DOI

Ren L., Yu S., Li J., Li L. Pilot study on the effects of operating parameters on membrane fouling during ultrafiltration of alkali/surfactant/polymer flooding wastewater: Optimization and modeling. RSC Adv. 2019;9:11111–11122. doi: 10.1039/C8RA10167A. PubMed DOI PMC

Thomassen J., Faraday D., Underwood B., Cleaver J. The effect of varying transmembrane pressure and crossflow velocity on the microfiltration fouling of a model beer. Sep. Purif. Technol. 2005;41:91–100. doi: 10.1016/j.seppur.2004.05.002. DOI

Gan Q., Howell J., Field R., England R.N., Bird M., O’Shaughnessy C., MeKechinie M. Beer clarification by microfiltration—Product quality control and fractionation of particles and macromolecules. J. Membr. Sci. 2001;194:185–196. doi: 10.1016/S0376-7388(01)00515-4. DOI

Madaeni S.S., Mohamamdi T., Moghadam M.K. Chemical cleaning of reverse osmosis membranes. Desalination. 2001;134:77–82. doi: 10.1016/S0011-9164(01)00117-5. DOI

Siembida-Lösch B. Encyclopedia of Membranes. Springer International Publishing; Berlin/Heidelberg, Germany: 2015. Physical Cleaning; pp. 1–4.

Madaeni S.S., Sharifnia S., Moradi G. Chemical Cleaning of Microfiltration Membranes Fouled by Whey. J. Chin. Chem. Soc. 2001;48:179–191. doi: 10.1002/jccs.200100031. DOI

Ebrahim S. Cleaning and regeneration of membranes in desalination and wastewater applications: State-of-the-art. Desalination. 1994;96:225–238. doi: 10.1016/0011-9164(94)85174-3. DOI

Arnal J.M., García-Fayos B., Sancho M. Expanding Issues in Desalination. IntechOpen; London, UK: 2011. Chapter 3: Membrane cleaning; pp. 63–84.

Chua H., Arnot T., Howell J. Controlling fouling in membrane bioreactors operated with a variable throughput. Desalination. 2002;149:225–229. doi: 10.1016/S0011-9164(02)00764-6. DOI

Judd S., Judd C. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment. Elsevier; London, UK: 2011.

Lin J.C.-T., Lee D.-J., Huang C. Membrane Fouling Mitigation: Membrane Cleaning. Sep. Sci. Technol. 2010;45:858–872. doi: 10.1080/01496391003666940. DOI

Li Q., Elimelech M. Organic Fouling and Chemical Cleaning of Nanofiltration Membranes: Measurements and Mechanisms. Environ. Sci. Technol. 2004;38:4683–4693. doi: 10.1021/es0354162. PubMed DOI

Bird M., Bartlett M. Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate. J. Food Eng. 2002;53:143–152. doi: 10.1016/S0260-8774(01)00151-0. DOI

Kubota Y.M.N., Hashimoto T. Part I membranes and applications in water and wastewater. In: Norman A.G.F., Li N., Ho T.M.W.S., editors. Advanced Membrane Technology and Applications. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2008. pp. 101–165.

Hoornaert P. Membrane cleaning. Reverse Osmosis. 1984;71:111–117. doi: 10.1016/b978-0-08-031144-9.50023-6. DOI

Al-Obeidani S., Al-Hinai H., Goosen M., Sablani S., Taniguchi Y., Okamura H. Chemical cleaning of oil contaminated polyethylene hollow fiber microfiltration membranes. J. Membr. Sci. 2008;307:299–308. doi: 10.1016/j.memsci.2007.09.048. DOI

Blanpain-Avet P., Migdal J., Bénézech T. Chemical cleaning of a tubular ceramic microfiltration membrane fouled with a whey protein concentrate suspension—Characterization of hydraulic and chemical cleanliness. J. Membr. Sci. 2009;337:153–174. doi: 10.1016/j.memsci.2009.03.033. DOI

Makardij A., Chen X., Farid M. Microfiltration and Ultrafiltration of Milk. Food Bioprod. Process. 1999;77:107–113. doi: 10.1205/096030899532394. DOI

Madaeni S.S., Tavakolian H.R., Rahimpour F. Cleaning Optimization of Microfiltration Membrane Employed for Milk Sterilization. Sep. Sci. Technol. 2011;46:571–580. doi: 10.1080/01496395.2010.534118. DOI

Hou L., Gao K., Li P., Zhang X., Wang Z., Song P., Yao W. A kinetic model for calculating total membrane fouling resistance in chemical cleaning process. Chem. Eng. Res. Des. 2017;128:59–72. doi: 10.1016/j.cherd.2017.10.004. DOI

Lee J.-W., Jung J., Cho Y.H., Yadav S.K., Baek K.Y., Park H.B., Hong S.M., Koo C.M. Fouling-Tolerant Nanofibrous Polymer Membranes for Water Treatment. ACS Appl. Mater. Interfaces. 2014;6:14600–14607. doi: 10.1021/am503874b. PubMed DOI

Gan M.T.M.Q., Howellb J.A., Fieldb R.W., Englandb R., Birdb M.R. Synergetic cleaning procedure for a ceramic membrane fouled by beer micro®ltration. J. Membr. Sci. 1999;155:277–289. doi: 10.1016/S0376-7388(98)00320-2. DOI

Woo Y.C., Lee J.K., Kim H.-S. Fouling characteristics of microfiltration membranes by organic and inorganic matter and evaluation of flux recovery by chemical cleaning. Desalination Water Treat. 2014;52:6920–6929. doi: 10.1080/19443994.2013.825885. DOI

Kweon J.H., Jung J.H., Lee S.R., Hur H.W., Shin Y., Choi Y.H. Effects of consecutive chemical cleaning on membrane performance and surface properties of microfiltration. Desalination. 2012;286:324–331. doi: 10.1016/j.desal.2011.11.043. DOI

Puspitasari V., Granville A., Le-Clech P., Chen V. Cleaning and ageing effect of sodium hypochlorite on polyvinylidene fluoride (PVDF) membrane. Sep. Purif. Technol. 2010;72:301–308. doi: 10.1016/j.seppur.2010.03.001. DOI

Kang S.-K., Choo K.-H. Use of submerged microfiltration membranes for glass industry wastewater reclamation: Pilot-scale testing and membrane cleaning. Desalination. 2006;189:170–180. doi: 10.1016/j.desal.2005.06.029. DOI

Ahmad A.L., Yasin N.M., Derek C., Lim J. Chemical cleaning of a cross-flow microfiltration membrane fouled by microalgal biomass. J. Taiwan Inst. Chem. Eng. 2014;45:233–241. doi: 10.1016/j.jtice.2013.06.018. DOI

Ebrahimi M., Willershausen D., Ashaghi K.S., Engel L., Placido L., Mund P., Bolduan P., Czermak P. Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination. 2010;250:991–996. doi: 10.1016/j.desal.2009.09.088. DOI

Salahi A., Gheshlaghi A., Mohammadi T., Madaeni S.S. Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination. 2010;262:235–242. doi: 10.1016/j.desal.2010.06.021. DOI

Brant J.A., Daniel U., Kwan P. Pilot-scale evaluation of chemical cleaning formulations for organic and biologically fouled microfiltration membranes. Water Qual. Technol. Conf. Expo. 2009;136:1111–1127.

Bansal B., Al-Ali R., Prieto R.M., Chen X. Rinsing and cleaning of α-lactalbumin fouled MF membranes. Sep. Purif. Technol. 2006;48:202–207. doi: 10.1016/j.seppur.2005.07.012. DOI

Wang Z., Li Y., Song P., Wang X. NaCl cleaning of 0.1 μm polyvinylidene fluoride (PVDF) membrane fouled with humic acid (HA) Chem. Eng. Res. Des. 2018;132:325–337. doi: 10.1016/j.cherd.2018.01.009. DOI

Kim Y.-B., Lee K., Chung J.-H. Optimum cleaning-in-place conditions for stainless steel microfiltration membrane fouled by terephthalic acid solids. J. Membr. Sci. 2002;209:233–240. doi: 10.1016/S0376-7388(02)00347-2. DOI

Madaeni S.S., Monfared H.A., Vatanpour V., Shamsabadi A.A., Salehi E., Daraei P., Laki S., Khatami S.M. Coke removal from petrochemical oily wastewater using γ-Al2O3 based ceramic microfiltration membrane. Desalination. 2012;293:87–93. doi: 10.1016/j.desal.2012.02.028. DOI

Naim R., Levitsky I., Gitis V. Surfactant cleaning of UF membranes fouled by proteins. Sep. Purif. Technol. 2012;94:39–43. doi: 10.1016/j.seppur.2012.03.031. DOI

Regula C., Carretier E., Wyart Y., Gésan-Guiziou G., Vincent A., Boudot D., Moulin P. Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Res. 2014;56:325–365. doi: 10.1016/j.watres.2014.02.050. PubMed DOI

Bartlett M., Bird M., Howell J. An experimental study for the development of a qualitative membrane cleaning model. J. Membr. Sci. 1995;105:147–157. doi: 10.1016/0376-7388(95)00052-E. DOI

Xing C.-H., Wen X.-H., Qian Y., Sun D., Klose P., Zhang X. Fouling and cleaning of microfiltration membrane in municipal wastewater reclamation. Water Sci. Technol. 2003;47:263–270. doi: 10.2166/wst.2003.0065. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Chemical Cleaning Process of Polymeric Nanofibrous Membranes

. 2022 Mar 09 ; 14 (6) : . [epub] 20220309

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...