Fouling and Chemical Cleaning of Microfiltration Membranes: A Mini-Review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
. CZ.02.1.01/0.0/0.0/16_019/0000843
Ministerstvo školství, mládeže a tělovýchovy
PubMed
33801897
PubMed Central
PMC8002060
DOI
10.3390/polym13060846
PII: polym13060846
Knihovny.cz E-zdroje
- Klíčová slova
- antifouling, chemical, cleaning, fouling, membrane, microfiltration,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Membrane fouling is one of the main drawbacks encountered during the practical application of membrane separation processes. Cleaning of a membrane is important to reduce fouling and improve membrane performance. Accordingly, an effective cleaning method is currently of crucial importance for membrane separation processes in water treatment. To clean the fouling and improve the overall efficiency of membranes, deep research on the cleaning procedures is needed. So far, physical, chemical, or combination techniques have been used for membrane cleaning. In the current work, we critically reviewed the fouling mechanisms affecting factors of fouling such as the size of particle or solute; membrane microstructure; the interactions between membrane, solute, and solvent; and porosity of the membrane and also examined cleaning methods of microfiltration (MF) membranes such as physical cleaning and chemical cleaning. Herein, we mainly focused on the chemical cleaning process. Factors affecting the chemical cleaning performance, including cleaning time, the concentration of chemical cleaning, and temperature of the cleaning process, were discussed in detail. This review is carried out to enable a better understanding of the membrane cleaning process for an effective membrane separation process.
Zobrazit více v PubMed
Adeleye A.S., Conway J.R., Garner K., Huang Y., Su Y., Keller A.A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J. 2016;286:640–662. doi: 10.1016/j.cej.2015.10.105. DOI
Nageeb M. Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater. Org. Pollut. Monit. Risk Treat. 2013;30:167–194. doi: 10.5772/54048. DOI
Comninellis C., Kapalka A., Malato S.A., Parsons S., Poulios I., Mantzavinos D. Advanced oxidation processes for water treatment: Advances and trends for R&D. J. Chem. Technol. Biotechnol. 2008;83:769–776. doi: 10.1002/jctb.1873. DOI
Petrovic M., Radjenovic J., Barcelo D. Advanced oxidation processes (AOPs) applied for wastewater and drinking water treatment. Elimination of pharmaceuticals. Holist. Approach Environ. 2011;1:63–74.
Andreozzi R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today. 1999;53:51–59. doi: 10.1016/S0920-5861(99)00102-9. DOI
Martínez-Huitle C.A., Ferro S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes. Chem. Soc. Rev. 2006;35:1324–1340. doi: 10.1039/B517632H. PubMed DOI
Bauer R., Fallmann H. The Photo-Fenton Oxidation—A cheap and efficient wastewater treatment method. Res. Chem. Intermed. 1997;23:341–354. doi: 10.1163/156856797X00565. DOI
Friedmann D., Mendive C.B., Bahnemann D.W. TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis. Appl. Catal. B Environ. 2010;99:398–406. doi: 10.1016/j.apcatb.2010.05.014. DOI
Vidal A. Developments in solar photocatalysis for water purification. Chemosphere. 1998;36:2593–2606. doi: 10.1016/S0045-6535(97)10221-1. PubMed DOI
Lee S.-Y., Park S.-J. TiO2 photocatalyst for water treatment applications. J. Ind. Eng. Chem. 2013;19:1761–1769. doi: 10.1016/j.jiec.2013.07.012. DOI
Bouwer E.J., Crowe P.B. Biological Processes in Drinking Water Treatment. J. Am. Water Work. Assoc. 1988;80:82–93. doi: 10.1002/j.1551-8833.1988.tb03103.x. DOI
Crini G., Lichtfouse E. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett. 2019;17:145–155. doi: 10.1007/s10311-018-0785-9. DOI
Chaplin B.P. Advantages, Disadvantages, and Future Challenges of the Use of Electrochemical Technologies for Water and Wastewater Treatment. Elsevier BV; Oxford, UK: 2018. pp. 451–494.
Amuda O.S., Amoo I.A. Coagulation/flocculation process and sludge conditioning in beverage industrial wastewater treatment. J. Hazard. Mater. 2007;141:778–783. doi: 10.1016/j.jhazmat.2006.07.044. PubMed DOI
Tzoupanos N.D., Zouboulis A.I. Coagulation-flocculation processes in water/wastewater treatment: The application of new generation of chemical reagents; Proceedings of the 6th IASME/WSEAS Int. Conf. on Heat Transfer, Thermal Engineering And Environment (HTE 8); Rhodes Island, Greece. 20–22 August 2009; pp. 309–317.
Madaeni S.S., Yeganeh M.K. Microfiltration of Emulsified Oil Wastewater. J. Porous Mater. 2003;10:131–138. doi: 10.1023/A:1026035830187. DOI
El-Ghaffar M.A.A., Tieama H.A. A Review of Membranes Classifications, Configurations, Surface Modifications, Characteristics and Its Applications in Water Purification. Chem. Biomol. Eng. 2017;2:57–82. doi: 10.11648/J.CBE.20170202.11. DOI
Yalcinkaya F., Boyraz E., Maryska J., Kucerova K. A Review on Membrane Technology and Chemical Surface Modification for the Oily Wastewater Treatment. Materials. 2020;13:493. doi: 10.3390/ma13020493. PubMed DOI PMC
Li C., Sun W., Lu Z., Ao X., Li S. Ceramic nanocomposite membranes and membrane fouling: A review. Water Res. 2020;175:115674. doi: 10.1016/j.watres.2020.115674. PubMed DOI
Zirehpour A. Nanostructured Polymer Membranes. Vol. 2. John Wiley & Sons Ltd.; London, UK: 2016. Rahimpour, A. Membranes for wastewater treatment; pp. 159–207.
Baker R.W. Membrane Technology and Applications. John Wiley & Sons Ltd.; London, UK: 2004. Membrane technology and applications; pp. 275–299.
Grant R. Membrane Separations. Mater. Manuf. Process. 1989;4:483–503. doi: 10.1080/10426918908956311. DOI
Urošević T., Povrenović D., Vukosavljević P., Urošević I., Stevanović S. Recent developments in microfiltration and ultrafiltration of fruit juices. Food Bioprod. Process. 2017;106:147–161. doi: 10.1016/j.fbp.2017.09.009. DOI
Li P., Zhang S., Lv Y., Ma G., Zuo X. Fouling mechanism and control strategy of inorganic membrane. E3S Web Conf. 2020;194:04047. doi: 10.1051/e3sconf/202019404047. DOI
Huang S., Ras R.H., Tian X. Antifouling membranes for oily wastewater treatment: Interplay between wetting and membrane fouling. Curr. Opin. Colloid Interface Sci. 2018;36:90–109. doi: 10.1016/j.cocis.2018.02.002. DOI
Devanadera M., Dalida M. Fouling of Ceramic Microfiltration Membrane by Soluble Algal Organic Matter (Saom) from Chlorella Sp. and Aeruginosa M. and its Mitigation Using Feed-Pretreatment; Proceedings of the 14 th International Conference on Environmental Science and Technology; Rhodes, Greece. 3–5 September 2015.
Sioutopoulos D., Karabelas A., Mappas V. Membrane Fouling Due to Protein—Polysaccharide Mixtures in Dead-End Ultrafiltration; the Effect of Permeation Flux on Fouling Resistance. Membranes. 2019;9:21. doi: 10.3390/membranes9020021. PubMed DOI PMC
Dickhout J., Moreno J., Biesheuvel P., Boels L., Lammertink R., de Vos W. Produced water treatment by membranes: A review from a colloidal perspective. J. Colloid Interface Sci. 2017;487:523–534. doi: 10.1016/j.jcis.2016.10.013. PubMed DOI
Bazin M.M., Nakamura Y., Ahmad N. Chemical Cleaning of Microfiltration Ceramic Membrane Fouled by Nom. J. Teknol. 2018;80:95–103. doi: 10.11113/jt.v80.12156. DOI
He Z., Miller D.J., Kasemset S., Paul D.R., Freeman B.D. The effect of permeate flux on membrane fouling during microfiltration of oily water. J. Membr. Sci. 2017;525:25–34. doi: 10.1016/j.memsci.2016.10.002. DOI
Jepsen K.L., Bram M.V., Pedersen S., Yang Z. Membrane Fouling for Produced Water Treatment: A Review Study from a Process Control Perspective. Water. 2018;10:847. doi: 10.3390/w10070847. DOI
France T.C., Bot F., Kelly A.L., Crowley S.V., O’Mahony J.A. The influence of temperature on filtration performance and fouling during cold microfiltration of skim milk. Sep. Purif. Technol. 2021;262:118256. doi: 10.1016/j.seppur.2020.118256. DOI
Kujawa J., Chrzanowska E., Kujawski W. Transport properties and fouling issues of membranes utilized for the concentration of dairy products by air-gap membrane distillation and microfiltration. Chem. Pap. 2018;73:565–582. doi: 10.1007/s11696-018-0615-3. DOI
Garmsiri E., Rasouli Y., Abbasi M., Izadpanah A.A. Chemical cleaning of mullite ceramic microfiltration membranes which are fouled during oily wastewater treatment. J. Water Process. Eng. 2017;19:81–95. doi: 10.1016/j.jwpe.2017.07.012. DOI
Kimura K., Honoki D., Sato T. Effective physical cleaning and adequate membrane flux for direct membrane filtration (DMF) of municipal wastewater: Up-concentration of organic matter for efficient energy recovery. Sep. Purif. Technol. 2017;181:37–43. doi: 10.1016/j.seppur.2017.03.005. DOI
Shahbazi Z., Mirsaeedghazi H., Paghaleh A.S. Selection of the most effective chemical cleaning procedure in the membrane clarification of pomegranate juice. J. Food Process. Preserv. 2021;45 doi: 10.1111/jfpp.15195. DOI
Bazan M., Carpintero-Tepole V., La Fuente E.B.-D., Drioli E., Ascanio G. On the use of ultrasonic dental scaler tips as cleaning technique of microfiltration ceramic membranes. Ultrasonics. 2020;101:106035. doi: 10.1016/j.ultras.2019.106035. PubMed DOI
Lam Z., Anlauf H., Nirschl H. High-Pressure Jet Cleaning of Polymeric Microfiltration Membranes. Chem. Eng. Technol. 2019;43:457–464. doi: 10.1002/ceat.201900449. DOI
Zhang B., Yu S., Zhu Y., Shen Y., Gao X., Shi W., Tay J.H. Efficiencies and mechanisms of the chemical cleaning of fouled polytetrafluoroethylene (PTFE) membranes during the microfiltration of alkali/surfactant/polymer flooding oilfield wastewater. RSC Adv. 2019;9:36940–36950. doi: 10.1039/C9RA06745K. PubMed DOI PMC
Lee H., Kang J.-S., Kim H., Lee S. Salt cleaning of EfOM-fouled MF membrane for wastewater reclamation. Desalination Water Treat. 2020;180:55–66. doi: 10.5004/dwt.2020.25149. DOI
Holman S.R., Ohlinger K.N. An Evaluation of Fouling Potential and Methods to Control Fouling in Microfiltration Membranes for Secondary Wastewater Effluent. Proc. Water Environ. Fed. 2007;2007:6417–6444. doi: 10.2175/193864707787223907. DOI
Li H., Chen V. Membrane Fouling and Cleaning in Food and Bioprocessing. Elsevier BV; Oxford, UK: 2010. pp. 213–254.
Ulbricht M., Ansorge W., Danielzik I., König M., Schuster O. Fouling in microfiltration of wine: The influence of the membrane polymer on adsorption of polyphenols and polysaccharides. Sep. Purif. Technol. 2009;68:335–342. doi: 10.1016/j.seppur.2009.06.004. DOI
Paugam L., Delaunay D., Diagne N.W., Rabiller-Baudry M. Cleaning of skim milk PES ultrafiltration membrane: On the real effect of nitric acid step. J. Membr. Sci. 2013;428:275–280. doi: 10.1016/j.memsci.2012.10.013. DOI
Maskooki A., Kobayashi T., Mortazavi S.A., Maskooki A. Effect of low frequencies and mixed wave of ultrasound and EDTA on flux recovery and cleaning of microfiltration membranes. Sep. Purif. Technol. 2008;59:67–73. doi: 10.1016/j.seppur.2007.05.028. DOI
Kelly S.T., Zydney A.L. Mechanisms for BSA fouling during microfiltration. J. Membr. Sci. 1995;107:115–127. doi: 10.1016/0376-7388(95)00108-O. DOI
Liu C., Caothien S., Hayes J., Caothuy T., Otoyo T., Ogawa T. Membrane Chemical Cleaning: From Art to Science; Proceedings of the AWWA Membrane Technology Conference; San Antonio, TX, USA. 4–7 March 2001; Mar 7, 2001.
Koonani H., Amirinejad M. Combined three mechanisms models for membrane fouling during microfiltration. J. Membr. Sci. Res. 2019;5:274–282. doi: 10.22079/jmsr.2019.95781.1224. DOI
Zhang M., Liao B.-Q., Zhou X., He Y., Hong H., Lin H., Chen J. Effects of hydrophilicity/hydrophobicity of membrane on membrane fouling in a submerged membrane bioreactor. Bioresour. Technol. 2015;175:59–67. doi: 10.1016/j.biortech.2014.10.058. PubMed DOI
Doan H., Lohi A. Fouling in Membrane Filtration and Remediation Methods. Mass Transf. Adv. Sustain. Energy Environ. Oriented Numer. Modeling. 2013;195 doi: 10.5772/52370. DOI
Kumar R., Ismail A.F. Fouling control on microfiltration/ultrafiltration membranes: Effects of morphology, hydrophilicity, and charge. J. Appl. Polym. Sci. 2015;132 doi: 10.1002/app.42042. DOI
Salahi A., Abbasi M., Mohammadi T. Permeate flux decline during UF of oily wastewater: Experimental and modeling. Desalination. 2010;251:153–160. doi: 10.1016/j.desal.2009.08.006. DOI
Ren L., Yu S., Li J., Li L. Pilot study on the effects of operating parameters on membrane fouling during ultrafiltration of alkali/surfactant/polymer flooding wastewater: Optimization and modeling. RSC Adv. 2019;9:11111–11122. doi: 10.1039/C8RA10167A. PubMed DOI PMC
Thomassen J., Faraday D., Underwood B., Cleaver J. The effect of varying transmembrane pressure and crossflow velocity on the microfiltration fouling of a model beer. Sep. Purif. Technol. 2005;41:91–100. doi: 10.1016/j.seppur.2004.05.002. DOI
Gan Q., Howell J., Field R., England R.N., Bird M., O’Shaughnessy C., MeKechinie M. Beer clarification by microfiltration—Product quality control and fractionation of particles and macromolecules. J. Membr. Sci. 2001;194:185–196. doi: 10.1016/S0376-7388(01)00515-4. DOI
Madaeni S.S., Mohamamdi T., Moghadam M.K. Chemical cleaning of reverse osmosis membranes. Desalination. 2001;134:77–82. doi: 10.1016/S0011-9164(01)00117-5. DOI
Siembida-Lösch B. Encyclopedia of Membranes. Springer International Publishing; Berlin/Heidelberg, Germany: 2015. Physical Cleaning; pp. 1–4.
Madaeni S.S., Sharifnia S., Moradi G. Chemical Cleaning of Microfiltration Membranes Fouled by Whey. J. Chin. Chem. Soc. 2001;48:179–191. doi: 10.1002/jccs.200100031. DOI
Ebrahim S. Cleaning and regeneration of membranes in desalination and wastewater applications: State-of-the-art. Desalination. 1994;96:225–238. doi: 10.1016/0011-9164(94)85174-3. DOI
Arnal J.M., García-Fayos B., Sancho M. Expanding Issues in Desalination. IntechOpen; London, UK: 2011. Chapter 3: Membrane cleaning; pp. 63–84.
Chua H., Arnot T., Howell J. Controlling fouling in membrane bioreactors operated with a variable throughput. Desalination. 2002;149:225–229. doi: 10.1016/S0011-9164(02)00764-6. DOI
Judd S., Judd C. The MBR Book: Principles and Applications of Membrane Bioreactors for Water and Wastewater Treatment. Elsevier; London, UK: 2011.
Lin J.C.-T., Lee D.-J., Huang C. Membrane Fouling Mitigation: Membrane Cleaning. Sep. Sci. Technol. 2010;45:858–872. doi: 10.1080/01496391003666940. DOI
Li Q., Elimelech M. Organic Fouling and Chemical Cleaning of Nanofiltration Membranes: Measurements and Mechanisms. Environ. Sci. Technol. 2004;38:4683–4693. doi: 10.1021/es0354162. PubMed DOI
Bird M., Bartlett M. Measuring and modelling flux recovery during the chemical cleaning of MF membranes for the processing of whey protein concentrate. J. Food Eng. 2002;53:143–152. doi: 10.1016/S0260-8774(01)00151-0. DOI
Kubota Y.M.N., Hashimoto T. Part I membranes and applications in water and wastewater. In: Norman A.G.F., Li N., Ho T.M.W.S., editors. Advanced Membrane Technology and Applications. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2008. pp. 101–165.
Hoornaert P. Membrane cleaning. Reverse Osmosis. 1984;71:111–117. doi: 10.1016/b978-0-08-031144-9.50023-6. DOI
Al-Obeidani S., Al-Hinai H., Goosen M., Sablani S., Taniguchi Y., Okamura H. Chemical cleaning of oil contaminated polyethylene hollow fiber microfiltration membranes. J. Membr. Sci. 2008;307:299–308. doi: 10.1016/j.memsci.2007.09.048. DOI
Blanpain-Avet P., Migdal J., Bénézech T. Chemical cleaning of a tubular ceramic microfiltration membrane fouled with a whey protein concentrate suspension—Characterization of hydraulic and chemical cleanliness. J. Membr. Sci. 2009;337:153–174. doi: 10.1016/j.memsci.2009.03.033. DOI
Makardij A., Chen X., Farid M. Microfiltration and Ultrafiltration of Milk. Food Bioprod. Process. 1999;77:107–113. doi: 10.1205/096030899532394. DOI
Madaeni S.S., Tavakolian H.R., Rahimpour F. Cleaning Optimization of Microfiltration Membrane Employed for Milk Sterilization. Sep. Sci. Technol. 2011;46:571–580. doi: 10.1080/01496395.2010.534118. DOI
Hou L., Gao K., Li P., Zhang X., Wang Z., Song P., Yao W. A kinetic model for calculating total membrane fouling resistance in chemical cleaning process. Chem. Eng. Res. Des. 2017;128:59–72. doi: 10.1016/j.cherd.2017.10.004. DOI
Lee J.-W., Jung J., Cho Y.H., Yadav S.K., Baek K.Y., Park H.B., Hong S.M., Koo C.M. Fouling-Tolerant Nanofibrous Polymer Membranes for Water Treatment. ACS Appl. Mater. Interfaces. 2014;6:14600–14607. doi: 10.1021/am503874b. PubMed DOI
Gan M.T.M.Q., Howellb J.A., Fieldb R.W., Englandb R., Birdb M.R. Synergetic cleaning procedure for a ceramic membrane fouled by beer micro®ltration. J. Membr. Sci. 1999;155:277–289. doi: 10.1016/S0376-7388(98)00320-2. DOI
Woo Y.C., Lee J.K., Kim H.-S. Fouling characteristics of microfiltration membranes by organic and inorganic matter and evaluation of flux recovery by chemical cleaning. Desalination Water Treat. 2014;52:6920–6929. doi: 10.1080/19443994.2013.825885. DOI
Kweon J.H., Jung J.H., Lee S.R., Hur H.W., Shin Y., Choi Y.H. Effects of consecutive chemical cleaning on membrane performance and surface properties of microfiltration. Desalination. 2012;286:324–331. doi: 10.1016/j.desal.2011.11.043. DOI
Puspitasari V., Granville A., Le-Clech P., Chen V. Cleaning and ageing effect of sodium hypochlorite on polyvinylidene fluoride (PVDF) membrane. Sep. Purif. Technol. 2010;72:301–308. doi: 10.1016/j.seppur.2010.03.001. DOI
Kang S.-K., Choo K.-H. Use of submerged microfiltration membranes for glass industry wastewater reclamation: Pilot-scale testing and membrane cleaning. Desalination. 2006;189:170–180. doi: 10.1016/j.desal.2005.06.029. DOI
Ahmad A.L., Yasin N.M., Derek C., Lim J. Chemical cleaning of a cross-flow microfiltration membrane fouled by microalgal biomass. J. Taiwan Inst. Chem. Eng. 2014;45:233–241. doi: 10.1016/j.jtice.2013.06.018. DOI
Ebrahimi M., Willershausen D., Ashaghi K.S., Engel L., Placido L., Mund P., Bolduan P., Czermak P. Investigations on the use of different ceramic membranes for efficient oil-field produced water treatment. Desalination. 2010;250:991–996. doi: 10.1016/j.desal.2009.09.088. DOI
Salahi A., Gheshlaghi A., Mohammadi T., Madaeni S.S. Experimental performance evaluation of polymeric membranes for treatment of an industrial oily wastewater. Desalination. 2010;262:235–242. doi: 10.1016/j.desal.2010.06.021. DOI
Brant J.A., Daniel U., Kwan P. Pilot-scale evaluation of chemical cleaning formulations for organic and biologically fouled microfiltration membranes. Water Qual. Technol. Conf. Expo. 2009;136:1111–1127.
Bansal B., Al-Ali R., Prieto R.M., Chen X. Rinsing and cleaning of α-lactalbumin fouled MF membranes. Sep. Purif. Technol. 2006;48:202–207. doi: 10.1016/j.seppur.2005.07.012. DOI
Wang Z., Li Y., Song P., Wang X. NaCl cleaning of 0.1 μm polyvinylidene fluoride (PVDF) membrane fouled with humic acid (HA) Chem. Eng. Res. Des. 2018;132:325–337. doi: 10.1016/j.cherd.2018.01.009. DOI
Kim Y.-B., Lee K., Chung J.-H. Optimum cleaning-in-place conditions for stainless steel microfiltration membrane fouled by terephthalic acid solids. J. Membr. Sci. 2002;209:233–240. doi: 10.1016/S0376-7388(02)00347-2. DOI
Madaeni S.S., Monfared H.A., Vatanpour V., Shamsabadi A.A., Salehi E., Daraei P., Laki S., Khatami S.M. Coke removal from petrochemical oily wastewater using γ-Al2O3 based ceramic microfiltration membrane. Desalination. 2012;293:87–93. doi: 10.1016/j.desal.2012.02.028. DOI
Naim R., Levitsky I., Gitis V. Surfactant cleaning of UF membranes fouled by proteins. Sep. Purif. Technol. 2012;94:39–43. doi: 10.1016/j.seppur.2012.03.031. DOI
Regula C., Carretier E., Wyart Y., Gésan-Guiziou G., Vincent A., Boudot D., Moulin P. Chemical cleaning/disinfection and ageing of organic UF membranes: A review. Water Res. 2014;56:325–365. doi: 10.1016/j.watres.2014.02.050. PubMed DOI
Bartlett M., Bird M., Howell J. An experimental study for the development of a qualitative membrane cleaning model. J. Membr. Sci. 1995;105:147–157. doi: 10.1016/0376-7388(95)00052-E. DOI
Xing C.-H., Wen X.-H., Qian Y., Sun D., Klose P., Zhang X. Fouling and cleaning of microfiltration membrane in municipal wastewater reclamation. Water Sci. Technol. 2003;47:263–270. doi: 10.2166/wst.2003.0065. PubMed DOI