Foliar application of zinc improves morpho-physiological and antioxidant defense mechanisms, and agronomic grain biofortification of wheat (Triticum aestivum L.) under water stress
Status PubMed-not-MEDLINE Jazyk angličtina Země Saúdská Arábie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35280547
PubMed Central
PMC8913544
DOI
10.1016/j.sjbs.2021.10.061
PII: S1319-562X(21)00948-7
Knihovny.cz E-zdroje
- Klíčová slova
- Biofortification, Gas exchange attributes, Oxidative stress, Water stress, Zinc,
- Publikační typ
- časopisecké články MeSH
Agronomic biofortification with zinc (Zn) may be engaged to improve the nutritious value of food crops along-with tolerance to water deficit conditions. The Zn may increase plant resistance to water stress by boosting physiological and enzymatic antioxidants defense mechanisms. Major objective of this study was to investigate the effect of foliar applied Zn on grain zin biofortification and drought tolerance in wheat. Treatments include application of Zinc at terminal growth phases (BBCH growth stage 49 and BBCH growth stage 65) with five levels: 0 (control-ck), water spray, 5, 10 and 15 mM under two levels of water regimes; well-watered (where 80% water holding capacity (WHC) was maintained in the soil) and water stress, (where 40% WHC was maintained in the soil). Results revealed that water stress significantly reduced relative water contents, gas exchange attributes, plant height, yield and yield related attributes of wheat. In contrast, hydrogen peroxide, free proline levels, activities of malondialdehyde, and concentration of soluble protein were markedly increased under water stress condition. Application of various levels of Zn significantly improved the CAT, SOD, POD and ASP activities at 40% WHC compared with control treatment. Foliarly applied 10 and 15 mM Zn predominantly reduced the damaging impact of water stress by improving the plant status in the form of plant height, RWC and gas exchange attributes. Likewise, wheat plant treated with 10 mM Zn under water stress condition increased the grain yield by improving number of grains per spike, 100 grain weight and biological yield compared with control. Moreover, increasing Zn levels also increased Zn concentration in grains and leaves. Overall, this study suggests that optimum level of Zn (10 mM) might be promising for alleviating the adverse impacts of water stress and enhance the grain biofortification in wheat.
Zobrazit více v PubMed
B.A.Abd El-Hady Effect of zinc application on growth and nutrient uptake of barley plant irrigated with saline water J. Appl. Sci. Res., 3(2007), pp.431-436.
Abdelkhalik A., Pascual-Seva N., Nájera L., Domene M.A., Baixauli C., Pascual B. Effect of Deficit Irrigation on the Productive Response of Drip-irrigated Onion (Allium cepa L.) in Mediterranean Conditions. Horti. J. 2019 doi: 10.2503/hortj.utd-081. DOI
Aebi H. Volume 105. Elsevier; Amsterdam, The Netherlands: 1984. Aebi Methods in Enzymology; pp. 121–126. (Catalase in vitro).
M. Asif, C.E. Tunc, M.A. Yazici, Y. Tutus, R. Rehman, A. Rehman, L. Ozturk Effect of predicted climate change on growth and yield performance of wheat under varied nitrogen and zinc supply. Plant Soil, 434(2019), pp. 231–244.
S.A. Bagci, H. Ekiz, A. Yilmaz, I. Cakmak Effect of zinc deficiency and drought on grain yield of field-grown wheat cultivars in Central Anatolia. J. Agron. Crop Sci., 193(2007), pp. 198–206. https://doi.org/10.1111/j.1439-037X.2007.00256.x.
Y. Barrameda‐Medina, M. Lentini, S. Esposito, J.M. Ruiz, B. Blasco Zn‐biofortification enhanced nitrogen metabolism and photorespiration process in green leafy vegetable Lactuca sativa L. J. Sci. Food Agri., 97(2017), pp. 1828-1836. PubMed
Bates L.E., Waldren R.P., Teare I.D. Rapid determination of free proline for water stress studies. Plant Soil. 1973;39:205–207.
H.E. Bouis, A. Saltzman Improving nutrition through biofortification: a review of evidence from HarvestPlus, 2003 through 2016. Glob. Food Secur., 12 (2017), pp. 49–58. http://doi.org/10.1016/j.gfs.2017.01.009. PubMed PMC
Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. 1976;72:248–254. PubMed
Cakmak Ismail. Cakmak Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil. 2008;302(1-2):1–17. doi: 10.1007/s11104-007-9466-3. DOI
Cakmak I., Kutman U.B. Kutman Agronomic biofortification of cereals with zinc: a review. Eur. J. Soil Sci. 2018;69(1):172–180. doi: 10.1111/ejss.2018.69.issue-110.1111/ejss.12437. DOI
Cakmak I., Prom-u-thai C., Guilherme L.R.G., Rashid A., Hora K.H., Yazici A., Savasli E., Kalayci M., Tutus Y., Phuphong P., Rizwan M., Martins F.A.D., Dinali G.S., Ozturk L. Ozturk Iodine biofortification of wheat, rice and maize through fertilizer strategy. Plant Soil. 2017;418(1-2):319–335. doi: 10.1007/s11104-017-3295-9. DOI
I. Cakmak Tansley Review No. 111– possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol., 146(2000), pp. 185–205. https://doi.org/10.1046/j.1469-8137.2000.00630.x. PubMed
FAOSTAT. 2016; http://www.fao.org/3/a–as574e.pdf (accessed on April 10, 2016).
M. Faran, M. Farooq, A. Rehman, A. Nawaz, M.K. Saleem, N. Ali, K.H. Siddique High intrinsic seed Zn concentration improves abiotic stress tolerance in wheat. Plant and Soil, 437(2019), pp. 195–213.
C.N. Giannopolitis, S.K. Reis Superoxide dismutase I. Occurrence in higher plants. Plant Physiol. 59 (1977),pp. 309–314. PubMed PMC
Hasanuzzaman M., Bhuyan M., Anee T.I., Parvin K., Nahar K., Mahmud J.A., Fujita M. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antiox. 2019;8:384. doi: 10.1080/01904167.2017.1310887. PubMed DOI PMC
Hasanuzzaman M., Bhuyan M.H.M.B., Zulfiqar F., Raza A., Mohsin S.M., Mahmud J.A., Fujita M., Fotopoulos V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator. Antiox. 2020 https://doi.9:681.10.3390/antiox9080681 PubMed PMC
Hassan M.U., Aamer M., Chattha M.U., Haiying T., Shahzad B., Barbanti L., Nawaz M., Rasheed A., Afzal A., Liu Y., Guoqin H. The critical role of zinc in plants facing the drought stress. Agri. 2020;10:0396. doi: 10.3390/agriculture10090396. DOI
Hassan U., Aamer M., Chattha M.U., Haiying T., Shahzad B., Barbanti L., Nawaz M., Rasheed A., Afzal A., Liu Y., Guoqin H. The Critical Role of Zinc in Plants Facing the Drought Stress. Agri. 2020;10(9):396.
X.Y. Huang, D.Y. Chao, J.P. Gao, M.Z. Zhu, M. Shi, H.X. Lin A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. Genes develop., 23(2009), pp. 1805-1817. PubMed PMC
Hussain Shahid, Maqsood Muhammad Aamer, Rengel Zed, Aziz Tariq. Biofortification and estimated human bioavailability of zinc in wheat grains as influenced by methods of zinc application. Plant and Soil. 2012;361(1-2):279–290.
D. Kapoor, S. Bhardwaj, M. Landi, A. Sharma, M. Ramakrishnan, A. Sharma A The impact of drought in plant metabolism: how to exploit tolerance mechanisms to increase crop production. Appl. Sci., 10(2020), pp. 5692. https://doi.10.3390/app10165692.
Karim M., Zhang Y.Q., Zhao R.R., Chen X.P., Zhang F.S., Zou C.Q. Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J. Plant. Nutr. Soil Sci. 2012;75:142–151. doi: 10.1002/jpln.201100141. DOI
H.R. Khan, M.C. Donald, G.K. Rengel Zinc fertilization and water stress affects plant water relations, stomatal conductance and osmotic adjustment in chickpea (Cicer arientinum L.). Plant Soil, 267 (2004), pp. 271–284. https://doi.10.1007/s11104-005-0120-7.
M.A. Khatun, M.M. Hossain, A.A. Bari, K.M. Abdullahil, M.S. Parvez, M.F. Alam, A.H. Kabir Zinc deficiency tolerance in maize is associated with the up‐regulation of Zn transporter genes and antioxidant activities. Plant Biol., 20(2018), pp. 765–770. PubMed
G. Lyons Biofortification of cereals with foliar selenium and iodine could reduce hypothyroidism. Front. Plant Sci., 9 (2018), pp. 730. DOI: 10.3389/fpls.2018.00730. PubMed PMC
D. Ma, D. Sun, C. Wang, H. Ding, H. Qin, J. Hou, X. Huang, Y. Xie, T. Guo Physiological responses and yield of wheat plants in zinc-mediated alleviation of drought stress. Fron. Plant Sci., 8 (2017), pp. 860. PubMed PMC
Maghsoudi K., Emam Y., Ashraf M., Arvin M.J. Alleviation of field water stress in wheat cultivars by using silicon and salicylic acid applied separately or in combination. Crop Pastu. Sci. 2019;70:36–43. doi: 10.1071/CP18213. DOI
Marschner H. 2nd Edn. Academic Press; New York, NY: 1995. Mineral nutrition of higher plants.
N. Mehlam,V. Sindhi, D. Josula, P. Bisht, S.H. Wani An introduction to antioxidants and their roles in plant stress tolerance. In reactive oxygen species and antioxidant systems in plants: role and regulation under abiotic stress; Eds.; Springer: Singapore, (2017), pp. 1–23.
Nakano Y., Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981;22:867–880.
Phattarakul N., Rerkasem B., Li L.J., Wu L.H., Zou C.Q., Ram H., Sohu V.S., Kang B.S., Surek H., Kalayci M., Yazici A., Zhang F.S., Cakmak I. Cakmak Biofortification of rice grain with zinc through zinc fertilization in different countries. Plant Soil. 2012;361(1-2):131–141. doi: 10.1007/s11104-012-1211-x. DOI
Ram H., Rashid A., Zhang W., Duarte A.P., Phattarakul N., Simunji S., Kalayci M., Freitas R., Rerkasem B., Bal R.S., Mahmood K., Savasli E., Lungu O., Wang Z.H., de Barros V.L.N.P., Malik S.S., Arisoy R.Z., Guo J.X., Sohu V.S., Zou C.Q., Cakmak I. Cakmak Biofortification of wheat, rice and common bean by applying foliar zinc fertilizer along with pesticides in seven countries. Plant Soil. 2016;403(1-2):389–401. doi: 10.1007/s11104-016-2815-3. DOI
K.M. Rao,T. Sresty Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci., 157 (2000), pp. 113–128. http://doi.org/10.1016/S0168-9452(00)00273-9. PubMed
Rashid A. University of Hawaii at Manoa; Monoa, HI, USA: 1986. Mapping Zinc Fertility of Soils Using Indicator Plants and Soil Analyses. Ph.D. Thesis.
A. Rehman, M. Farooq, L. Ozturk, M. Asif, K.H. Siddique Zinc nutrition in wheat-based cropping systems. Plant Soil, 422(2018), pp.283-315.
Reynolds S.G. The gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems. J. Hydrol. 1970;11(3):258–273.
Sarker U., Oba Catalase S. superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci. Report. 2018;8:16496. doi: 10.1038/s41598-018-34944-0. PubMed DOI PMC
Sathisha G.S., Desai B.K., Yogesh L.N., Satyanarayana R., Latha H.S. Influence of zinc and iron application methods on available soil nutrient status and nutrient uptake by foxtail millet (Setaria italica L.) genotypes. IJCS. 2020;8:2640–2645.
M.A. Schonfeld, R.C. Johnson, B.F. carver, D.W. Mornhinweg Water relations in winter wheat as drought resistance indicators. Crop Sci., 28 (1988), pp. 526–531.
Shemi R., Wang R., Gheith E.M.S., Hussain H.A., Hussain S., Irfan M., Cholidah L., Zhang K., Zhang S., Wang L. Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Sci. Reports. 2021;11:3195. doi: 10.1038/s41598-021-82264-7. PubMed DOI PMC
Shokat S., Großkinsky D.K., Roitsch T., Liu F. Activities of leaf and spike carbohydrate-metabolic and antioxidant enzymes are linked with yield performance in three spring wheat genotypes grown under well-watered and drought conditions. BMC Plant Biol. 2020;20:400. doi: 10.1186/s12870-020-02581-3. PubMed DOI PMC
Steel R.G.D., Torrie J.H., Dickey D.A. 3rd Ed. McGraw Hill Book Co.; New York: 1997. Principles and Procedures of Statistics. A Biometrical Approach; pp. 172–177.
S. Sultana, H.M. Naser, N.C. Shil, S. Akhter, R.A. Begum Effect of foliar application of zinc on yield of wheat grown by avoiding irrigation at different growth stages. Bang. J. Agric. Res., 41(2016), 323–334. https://doi.10.3329/bjar.v41i2.28234.
L. Sun, F. Song, X. Zhu, S. Liu, F. Liu, Y. Wang, X. Li Nano-ZnO alleviates drought stress via modulating the plant water use and carbohydrate metabolism in maize. Arch. Agron. Soil Sci. 67(2021), pp. 245-259.
W. Sun, S. Zhou, Y. Sun, Y. Xu Synthesis and evaluation of cationic flocculant P(DAC-PAPTAC-AM) for flocculation of coal chemical wastewater. J. Environ. Sci.-China, 99 (2021), pp. 239–248. PubMed
Tabatabai S.M.R., Oveysi M., Honarnejad R. Evaluation of some characteristics of corn under water stress and zinc foliar application. Gmp. Rev. 2015;16:34–38.
Thomas R.L., Jen J.J., Morr C.V. Changes in soluble and bound peroxidase-IAA oxidase during tomato fruit development. J. Food Sci. 1982;47:158–161.
Ul-Allah Sami, Iqbal Muhammad, Maqsood Shafique, Naeem Muhammad, Ijaz Muhammad, Ashfaq Waseem, Hussain Mubshar. Improving the performance of bread wheat genotypes by managing irrigation and nitrogen under semi-arid conditions. Arch. Agron. Soil Sci. 2018;64(12):1678–1689.
Velikova V., Yordanov I., Edreva A. Edreva Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 2000;151(1):59–66. doi: 10.1016/S0168-9452(99)00197-1. DOI
W. Weisany, Y. Sohrabi, G. Heidari, A. Siosemardeh, K. Ghassemi-Golezani Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (’Glycine max’ L.). Plant Omics, 5(2012), pp. 60–67.
R.M. Welch, R.D. Graham, I. Cakmak Linking agricultural production practices to improving human nutrition and health. Expert paper written for ICN2 Second International Conference on Nutrition Preparatory Technical Meeting, Rome, Italy, November (2013), 13–15, http://www.fao.org/3/a-as574e.pdf.
Winter J.M., Lopez J.R., Ruane A.C., Young C.A., Scanlon B.R., Rosenzweig C. Representing water scarcity in future agricultural assessments. Anthropocene. 2017;18:15–26.
Wu S., Hu C., Tan Q., Li L., Shi K., Zheng Y., Sun X. Drought stress tolerance mediated by zinc-induced antioxidative defense and osmotic adjustment in cotton (Gossypium hirsutum) Acta Physiol. Plant. 2015;37:1–9.
Xue Y.F., Yue S.C., Liu D.Y., Zhang W., Chen X.P., Zou C.Q. Dynamic zinc accumulation and contributions of pre-and/or post-silking zinc uptake to grain zinc of maize as affected by nitrogen supply. Fron. Plant Sci. 2019;10:1203. PubMed PMC
Yavas I., Unay A. Effects of zinc and salicylic acid on wheat under drought stress. J. Anim Plant Sci. 2016;26:1012–1018.
Yu H., Zhang Q., Sun P., Song C. Impact of droughts on winter wheat yield in different growth stages during 2001–2016 in eastern china. Int. J. Dis. Risk Sci. 2018;9:376–391. doi: 10.1007/s13753-018-0187-4. DOI
Zia Munir H., Watts Michael J., Gardner Amanda, Chenery Simon R. Chenery Iodine status of soils, grain crops, and irrigation waters in Pakistan. Environ. Earth Sci. 2015;73(12):7995–8008.
Zou C.Q., Zhang Y.Q., Rashid A., Ram H., Savasli E., Arisoy R.Z., Cakmak I. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant and soil. 2012;361(1):119–130.