Nanofiber applications in microbial fuel cells for enhanced energy generation: a mini review
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
38500621
PubMed Central
PMC10945513
DOI
10.1039/d4ra00674g
PII: d4ra00674g
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Microbial fuel cells (MFCs) represent simple devices that harness the metabolic activities of microorganisms to produce electrical energy from diverse sources such as organic waste and sustainable biomass. Because of their unique advantage to generate sustainable energy, through the employment of biodegradable and repurposed waste materials, the development of MFCs has garnered considerable interest. Critical elements are typically the electrodes and separator. This mini-review article presents a critical assessment of nanofiber technology used as electrodes and separators in MFCs to enhance energy generation. In particular, the review highlights the application of nanofiber webs in each part of MFCs including anodes, cathodes, and membranes and their influence on energy generation. The role of nanofiber technology in this regard is then analysed in detail, focusing on improved electron transfer rate, enhanced biofilm formation, and enhanced durability and stability. In addition, the challenges and opportunities associated with integrating nanofibers into MFCs are discussed, along with suggestions for future research in this field. Significant developments in MFCs over the past decade have led to a several-fold increase in achievable power density, yet further improvements in performance and the exploration of cost-effective materials remain promising areas for further advancement. This review demonstrates the great promise of nanofiber-based electrodes and separators in future applications of MFCs.
Zobrazit více v PubMed
Pham T. Rabaey K. Aelterman P. Clauwaert P. De Schamphelaire L. Boon N. Verstraete W. Microbial fuel cells in relation to conventional anaerobic digestion technology. Eng. Life Sci. 2006;6:285–292.
Pant D. Van Bogaert G. Diels L. Vanbroekhoven K. A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour. Technol. 2010;101:1533–1543. doi: 10.1016/j.biortech.2009.10.017. PubMed DOI
Tsipa A. Varnava C. K. Grenni P. Ferrara V. Pietrelli A. Bio-electrochemical system depollution capabilities and monitoring applications: Models, applicability, advanced bio-based concept for predicting pollutant degradation and microbial growth kinetics via gene regulation modelling. Processes. 2021;9:1038.
Santoro C. Arbizzani C. Erable B. Ieropoulos I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources. 2017;356:225–244. doi: 10.1016/j.jpowsour.2017.03.109. PubMed DOI PMC
Ancona V. Caracciolo A. B. Borello D. Ferrara V. Grenni P. Pietrelli A. Microbial fuel cell: an energy harvesting technique for environmental remediation. Int. J. Environ. Impacts. 2020;3:168–179.
Obileke K. Onyeaka H. Meyer E. L. Nwokolo N. Microbial fuel cells, a renewable energy technology for bio-electricity generation: A mini-review. Electrochem. Commun. 2021;125:107003. doi: 10.1016/j.elecom.2021.107003. DOI
Rahimnejad M. Adhami A. Darvari S. Zirepour A. Oh S.-E. Microbial fuel cell as new technology for bioelectricity generation: A review. Alexandria Eng. J. 2015;54:745–756. doi: 10.1016/j.aej.2015.03.031. DOI
Imoro A. Z., Acheampong N. A., Oware S., Okrah H., Coulibaly V. T., Ali A. G., Asare-Amegavi F., Krah D. and Offei F., The Potential Benefits of Microbial Fuel Cells in the Context of the Sustainable Development Goals, in, Microbial Fuel Cells for Environmental Remediation, ed. A. Ahmad, M. N. Mohamad Ibrahim, A. A. Yaqoob and S. H. Mohd Setapar, Springer Nature, Singapore, 2022, pp. 167–182, 10.1007/978-981-19-2681-5_9 DOI
Potter M. C. Electrical effects accompanying the decomposition of organic compounds. Proc. R. Soc. Lond. Ser. B Contain. Pap. Biol. Character. 1911;84:260–276.
Lovecchio N. Di Meo V. Pietrelli A. Customized Multichannel Measurement System for Microbial Fuel Cell Characterization. Bioengineering. 2023;10(5):624. doi: 10.3390/bioengineering10050624. PubMed DOI PMC
Pietrelli A., Bavasso I., Lovecchio N., Ferrara V. and Allard B., MFCs as biosensor, bioreactor and bioremediator, in, 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), 2019, pp. 302–306, 10.1109/IWASI.2019.8791412 DOI
Bennetto H. P., Ewart D. K., Nobar A. M. and Sanderson I., Microbial Fuel Cell Studies of Iron-Oxidising Bacteria, in, Charge and Field Effects in Biosystems—2, ed. M. J. Allen, S. F. Cleary and F. M. Hawkridge, Springer US, Boston, MA, 1989, pp. 339–349, 10.1007/978-1-4613-0557-6_29 DOI
Ucar D. Zhang Y. Angelidaki I. An Overview of Electron Acceptors in Microbial Fuel Cells. Front. Microbiol. 2017;8:643. PubMed PMC
Pietrelli A., Ferrara V., Khaled F., Allard B., Buret F. and Costantini F., Electrical characterization of MFC for low power applications, in, 2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), 2016, pp. 1–5, 10.1109/EEEIC.2016.7555624 DOI
Ieropoulos I. Melhuish C. Greenman J. Artificial gills for robots: MFC behaviour in water. Bioinspiration Biomimetics. 2007;2:S83. doi: 10.1088/1748-3182/2/3/S02. PubMed DOI
Analyze Results, https://www.webofscience.com/wos/woscc/analyze-results/35133ee5-ba02-4ca8-b500-901ac57150bf-7fabea52, accessed April 6, 2023
Torres C. I. Kato Marcus A. Rittmann B. E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 2008;100:872–881. PubMed
Palanisamy G. Jung H.-Y. Sadhasivam T. Kurkuri M. D. Kim S. C. Roh S.-H. A comprehensive review on microbial fuel cell technologies: Processes, utilization, and advanced developments in electrodes and membranes. J. Cleaner Prod. 2019;221:598–621. doi: 10.1016/j.jclepro.2019.02.172. DOI
Sharif H. M. A. Farooq M. Hussain I. Ali M. Mujtaba M. A. Sultan M. Yang B. Recent innovations for scaling up microbial fuel cell systems: Significance of physicochemical factors for electrodes and membranes materials. J. Taiwan Inst. Chem. Eng. 2021;129:207–226. doi: 10.1016/j.jtice.2021.09.001. DOI
Mashkour M. Rahimnejad M. Mashkour M. Soavi F. Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly. Appl. Energy. 2021;282:116150. doi: 10.1016/j.apenergy.2020.116150. DOI
Surti P. Kailasa S. K. Mungray A. Park T. J. Mungray A. K. Vermiculite nanosheet augmented novel proton exchange membrane for microbial fuel cell. Fuel. 2024;357:130046. doi: 10.1016/j.fuel.2023.130046. DOI
Zhang M. Liu Y. Li C. Enhanced performance of microbial fuel cells with a bacteria/shape-controllable aligned carbon nanofibers hybrid biofilm. Int. J. Hydrogen Energy. 2023;48:1107–1119. doi: 10.1016/j.ijhydene.2022.09.300. DOI
Nandy A. Farkas D. Pepió-Tárrega B. Martinez-Crespiera S. Borràs E. Avignone-Rossa C. Di Lorenzo M. Influence of carbon-based cathodes on biofilm composition and electrochemical performance in soil microbial fuel cells. Environ. Sci. Ecotechnology. 2023;16:100276. doi: 10.1016/j.ese.2023.100276. PubMed DOI PMC
Yalcinkaya B. Callioglu F. C. Yener F. Measurement and analysis of jet current and jet life in roller electrospinning of polyurethane. Text. Res. J. 2014;84:1720–1728.
Yalcinkaya B. Yener F. Jirsak O. Cengiz-Callioglu F. On the nature of electric current in the electrospinning process. J. Nanomater. 2013;2013:6.
Cai T. Huang M. Huang Y. Zheng W. Enhanced performance of microbial fuel cells by electrospinning carbon nanofibers hybrid carbon nanotubes composite anode. Int. J. Hydrogen Energy. 2019;44:3088–3098. doi: 10.1016/j.ijhydene.2018.11.205. DOI
Cesare F. D. Mattia E. D. Zussman E. Macagnano A. A study on the dependence of bacteria adhesion on the polymer nanofibre diameter. Environ. Sci.: Nano. 2019;6:778–797. doi: 10.1039/C8EN01237G. DOI
Liu Y. Zhang X. Li H. Peng L. Qin Y. Lin X. Zheng L. Li C. Porous α-Fe2O3 nanofiber combined with carbon nanotube as anode to enhance the bioelectricity generation for microbial fuel cell. Electrochim. Acta. 2021;391:138984. doi: 10.1016/j.electacta.2021.138984. DOI
Manickam S. S. Karra U. Huang L. Bui N.-N. Li B. McCutcheon J. R. Activated carbon nanofiber anodes for microbial fuel cells. Carbon. 2013;53:19–28. doi: 10.1016/j.carbon.2012.10.009. DOI
Tao Y. Liu Q. Chen J. Wang B. Wang Y. Liu K. Li M. Jiang H. Lu Z. Wang D. Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode. Environ. Sci. Technol. 2016;50:7889–7895. doi: 10.1021/acs.est.6b00648. PubMed DOI
Ghasemi M. Shahgaldi S. Ismail M. Kim B. H. Yaakob Z. Wan Daud W. R. Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. Int. J. Hydrogen Energy. 2011;36:13746–13752. doi: 10.1016/j.ijhydene.2011.07.118. DOI
Karra U. Manickam S. S. McCutcheon J. R. Patel N. Li B. Power generation and organics removal from wastewater using activated carbon nanofiber (ACNF) microbial fuel cells (MFCs) Int. J. Hydrogen Energy. 2013;38:1588–1597. doi: 10.1016/j.ijhydene.2012.11.005. DOI
Bosch-Jimenez P. Martinez-Crespiera S. Amantia D. Della Pirriera M. Forns I. Shechter R. Borràs E. Non-precious metal doped carbon nanofiber air-cathode for Microbial Fuel Cells application: Oxygen reduction reaction characterization and long-term validation. Electrochim. Acta. 2017;228:380–388. doi: 10.1016/j.electacta.2016.12.175. DOI
Shahgaldi S. Ghasemi M. Wan Daud W. R. Yaakob Z. Sedighi M. Alam J. Ismail A. F. Performance enhancement of microbial fuel cell by PVDF/Nafion nanofibre composite proton exchange membrane. Fuel Process. Technol. 2014;124:290–295. doi: 10.1016/j.fuproc.2014.03.015. DOI
Li H.-Y. Liu Y.-L. Nafion-functionalized electrospun poly(vinylidene fluoride) (PVDF) nanofibers for high performance proton exchange membranes in fuel cells. J. Mater. Chem. A. 2014;2:3783–3793. doi: 10.1039/C3TA14264G. DOI
Ghasemi M. Shahgaldi S. Ismail M. Yaakob Z. Daud W. R. W. New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chem. Eng. J. 2012;184:82–89. doi: 10.1016/j.cej.2012.01.001. DOI
Chae K.-J. Kim K.-Y. Choi M.-J. Yang E. Kim I. S. Ren X. Lee M. Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells. Chem. Eng. J. 2014;254:393–398. doi: 10.1016/j.cej.2014.05.145. DOI
Yalcinkaya F. Yalcinkaya B. Jirsak O. Analysis of the effects of rotating roller speed on a roller electrospinning system. Text. Res. J. 2017;87:913–928.
Yalcinkaya F. Preparation of various nanofiber layers using wire electrospinning system. Arabian J. Chem. 2019;12:5162–5172. doi: 10.1016/j.arabjc.2016.12.012. DOI
Patnaik A. Anandjiwala R. D. An optimized melt spinning process to increase the productivity of nanofiber materials. J. Ind. Text. 2016;45:1026–1037.
Padron S. Fuentes A. Caruntu D. Lozano K. Experimental study of nanofiber production through forcespinning. J. Appl. Phys. 2013;113:024318.
He Z. Liu L. Gao C. Zhou Z. Liang X. Lei Y. He Z. Liu S. Carbon nanofibers grown on the surface of graphite felt by chemical vapour deposition for vanadium redox flow batteries. RSC Adv. 2013;3:19774–19777. doi: 10.1039/C3RA22631J. DOI
Hulteen J. Chen H. Chambliss C. Martin C. Template synthesis of carbon nanotubule and nanofiber arrays. Nanostruct. Mater. 1997;9:133–136.
Massaglia G. Margaria V. Fiorentin M. R. Pasha K. Sacco A. Castellino M. Chiodoni A. Bianco S. Pirri F. C. Quaglio M. Nonwoven mats of N-doped carbon nanofibers as high-performing anodes in microbial fuel cells. Mater. Today Energy. 2020;16:100385. doi: 10.1016/j.mtener.2020.100385. DOI
Qin Y. Li H. Sun Y. Guo S. Liu Y. Zhai Z. Li C. Directional assembly of multi-catalytic sites CoCu-MOFs with porous carbon nanofiber templates as efficient catalyst for microbial fuel cells. J. Environ. Chem. Eng. 2023;11:109662. doi: 10.1016/j.jece.2023.109662. DOI
Jiang H. Halverson L. J. Dong L. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm. J. Manuf. Syst. 2015;25:125017. doi: 10.1088/0960-1317/25/12/125017. DOI
Jung H.-Y. Roh S.-H. Carbon Nanofiber/Polypyrrole Nanocomposite as Anode Material in Microbial Fuel Cells. J. Nanosci. Nanotechnol. 2017;17:5830–5833. doi: 10.1166/jnn.2017.14149. DOI
Zhang P. Liu J. Qu Y. Zhang J. Zhong Y. Feng Y. Enhanced performance of microbial fuel cell with a bacteria/multi-walled carbon nanotube hybrid biofilm. J. Power Sources. 2017;361:318–325. doi: 10.1016/j.jpowsour.2017.06.069. DOI
Guo K. Prévoteau A. Patil S. A. Rabaey K. Engineering electrodes for microbial electrocatalysis. Curr. Opin. Biotechnol. 2015;33:149–156. PubMed
Liu Y. Wang J. Sun Y. Li H. Zhai Z. Guo S. Ren T. Li C. Nitrogen-doped carbon nanofibers anchoring Fe nanoparticles as biocompatible anode for boosting extracellular electron transfer in microbial fuel cells. J. Power Sources. 2022;544:231890.
Wu X. Li X. Shi Z. Wang X. Wang Z. Li C. M. Electrospinning Mo-Doped Carbon Nanofibers as an Anode to Simultaneously Boost Bioelectrocatalysis and Extracellular Electron Transfer in Microbial Fuel Cells. Materials. 2023;16 doi: 10.3390/ma16062479. PubMed DOI PMC
Moradian J. M. Yang F.-Q. Xu N. Wang J.-Y. Wang J.-X. Sha C. Ali A. Yong Y.-C. Enhancement of bioelectricity and hydrogen production from xylose by a nanofiber polyaniline modified anode with yeast microbial fuel cell. Fuel. 2022;326:125056. doi: 10.1016/j.fuel.2022.125056. DOI
Roh S.-H. Electricity Generation from Microbial Fuel Cell with Polypyrrole-Coated Carbon Nanofiber Composite. J. Nanosci. Nanotechnol. 2015;15:1700–1703. doi: 10.1166/jnn.2015.9317. PubMed DOI
Jiang N. Yan M. Li Q. Zheng S. Hu Y. Xu X. Wang L. Liu Y. Huang M. Bioelectrocatalytic reduction by integrating pyrite assisted manganese cobalt-doped carbon nanofiber anode and bacteria for sustainable antimony catalytic removal. Bioresour. Technol. 2024;395:130378. doi: 10.1016/j.biortech.2024.130378. PubMed DOI
Lin W. Wu S. Tang T. Liao Y. Miao W. Shi Z. Wu X. Tuning metal atom doped interface of electrospinning nanowires to toward fast bioelectrocatalysis. Bioelectrochemistry. 2024;157:108664. doi: 10.1016/j.bioelechem.2024.108664. PubMed DOI
Hou C. Chen W. Fu L. Zhang S. Liang C. Wang Y. Facile synthesis of a Co/Fe bi-MOFs/CNF membrane nanocomposite and its application in the degradation of tetrabromobisphenol A. Carbohydr. Polym. 2020;247:116731. doi: 10.1016/j.carbpol.2020.116731. PubMed DOI
Jiang N. Song J. Yan M. Hu Y. Wang M. Liu Y. Huang M. Iron cobalt-doped carbon nanofibers anode to simultaneously boost bioelectrocatalysis and direct electron transfer in microbial fuel cells: Characterization, performance, and mechanism. Bioresour. Technol. 2023;367:128230. doi: 10.1016/j.biortech.2022.128230. PubMed DOI
Barakat N. A. M. Amen M. T. Ali R. H. Nassar M. M. Fadali O. A. Ali M. A. Kim H. Y. Carbon Nanofiber Double Active Layer and Co-Incorporation as New Anode Modification Strategies for Power-Enhanced Microbial Fuel Cells. Polymers. 2022;14:1542. doi: 10.3390/polym14081542. PubMed DOI PMC
Watanabe K. Recent Developments in Microbial Fuel Cell Technologies for Sustainable Bioenergy. J. Biosci. Bioeng. 2008;106:528–536. doi: 10.1263/jbb.106.528. PubMed DOI
Scott K. Cotlarciuc I. Head I. Katuri K. P. Hall D. Lakeman J. B. Browning D. Fuel cell power generation from marine sediments: Investigation of cathode materials. J. Chem. Technol. Biotechnol. 2008;83:1244–1254. doi: 10.1002/jctb.1937. DOI
Cheng S. Liu H. Logan B. E. Power Densities Using Different Cathode Catalysts (Pt and CoTMPP) and Polymer Binders (Nafion and PTFE) in Single Chamber Microbial Fuel Cells. Environ. Sci. Technol. 2006;40:364–369. doi: 10.1021/es0512071. PubMed DOI
Bergel A. Féron D. Mollica A. Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm. Electrochem. Commun. 2005;7:900–904. doi: 10.1016/j.elecom.2005.06.006. DOI
Zhang Y. Sun J. Hu Y. Li S. Xu Q. Bio-cathode materials evaluation in microbial fuel cells: A comparison of graphite felt, carbon paper and stainless steel mesh materials. Int. J. Hydrogen Energy. 2012;37:16935–16942. doi: 10.1016/j.ijhydene.2012.08.064. DOI
Logan B. Regan J. Microbial fuel cell: challenges and technology. Environ. Sci. Technol. 2006;40:5172–5180. PubMed
Luo H. Jin S. Fallgren P. H. Park H. J. Johnson P. A. A novel laccase-catalyzed cathode for microbial fuel cells. Chem. Eng. J. 2010;165:524–528. doi: 10.1016/j.cej.2010.09.061. DOI
Ghasemi M. Daud W. R. W. Mokhtarian N. Mayahi A. Ismail M. Anisi F. Sedighi M. Alam J. The effect of nitric acid, ethylenediamine, and diethanolamine modified polyaniline nanoparticles anode electrode in a microbial fuel cell. Int. J. Hydrogen Energy. 2013;38:9525–9532. doi: 10.1016/j.ijhydene.2012.12.016. DOI
Schröder U. Nießen J. Scholz F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem., Int. Ed. 2003;42:2880–2883. PubMed
Kaur R. Marwaha A. Chhabra V. A. Kim K.-H. Tripathi S. K. Recent developments on functional nanomaterial-based electrodes for microbial fuel cells. Renewable Sustainable Energy Rev. 2020;119:109551. doi: 10.1016/j.rser.2019.109551. DOI
Mehdinia A. Ziaei E. Jabbari A. Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. Int. J. Hydrogen Energy. 2014;39:10724–10730. doi: 10.1016/j.ijhydene.2014.05.008. DOI
Wu S. He W. Yang W. Ye Y. Huang X. Logan B. E. Combined carbon mesh and small graphite fiber brush anodes to enhance and stabilize power generation in microbial fuel cells treating domestic wastewater. J. Power Sources. 2017;356:348–355. doi: 10.1016/j.jpowsour.2017.01.041. DOI
He Z. Minteer S. D. Angenent L. T. Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell. Environ. Sci. Technol. 2005;39:5262–5267. doi: 10.1021/es0502876. PubMed DOI
Haile S. M. Fuel cell materials and components☆☆☆The Golden Jubilee Issue—Selected topics in Materials Science and Engineering: Past, Present and Future, edited by S. Suresh. Acta Mater. 2003;51:5981–6000. doi: 10.1016/j.actamat.2003.08.004. DOI
Zhao C. Wang Y. Shi F. Zhang J. Zhu J.-J. High biocurrent generation in Shewanella-inoculated microbial fuel cells using ionic liquid functionalized graphene nanosheets as an anode. Chem. Commun. 2013;49:6668–6670. doi: 10.1039/C3CC42068J. PubMed DOI
Yuan H. He Z. Graphene-modified electrodes for enhancing the performance of microbial fuel cells. Nanoscale. 2015;7:7022–7029. doi: 10.1039/C4NR05637J. PubMed DOI
Zhai D.-D. Fang Z. Jin H. Hui M. Kirubaharan C. J. Yu Y.-Y. Yong Y.-C. Vertical alignment of polyaniline nanofibers on electrode surface for high-performance microbial fuel cells. Bioresour. Technol. 2019;288:121499. doi: 10.1016/j.biortech.2019.121499. PubMed DOI
Rosenbaum M. Zhao F. Schröder U. Scholz F. Interfacing Electrocatalysis and Biocatalysis with Tungsten Carbide: A High-Performance, Noble-Metal-Free Microbial Fuel Cell. Angew. Chem., Int. Ed. 2006;45:6658–6661. doi: 10.1002/anie.200602021. PubMed DOI
Tao S. Irvine J. T. A redox-stable efficient anode for solid-oxide fuel cells. Nat. Mater. 2003;2:320–323. PubMed
Li C. Ding L. Cui H. Zhang L. Xu K. Ren H. Application of conductive polymers in biocathode of microbial fuel cells and microbial community. Bioresour. Technol. 2012;116:459–465. doi: 10.1016/j.biortech.2012.03.115. PubMed DOI
Zhou M. Chi M. Luo J. He H. Jin T. An overview of electrode materials in microbial fuel cells. J. Power Sources. 2011;196:4427–4435. doi: 10.1016/j.jpowsour.2011.01.012. DOI
Ramirez-Nava J. Martínez-Castrejón M. García-Mesino R. L. López-Díaz J. A. Talavera-Mendoza O. Sarmiento-Villagrana A. Rojano F. Hernández-Flores G. The Implications of Membranes Used as Separators in Microbial Fuel Cells. Membranes. 2021;11(10):738. doi: 10.3390/membranes11100738. PubMed DOI PMC
Hernández-Flores G. Andrio A. Compañ V. Solorza-Feria O. Poggi-Varaldo H. M. Synthesis and characterization of organic agar-based membranes for microbial fuel cells. J. Power Sources. 2019;435:226772. doi: 10.1016/j.jpowsour.2019.226772. DOI
Brunetti A. Fontananova E. Donnadio A. Casciola M. Di Vona M. L. Sgreccia E. Drioli E. Barbieri G. New approach for the evaluation of membranes transport properties for polymer electrolyte membrane fuel cells. J. Power Sources. 2012;205:222–230. doi: 10.1016/j.jpowsour.2012.01.108. DOI
Shabani M. Younesi H. Pontié M. Rahimpour A. Rahimnejad M. Zinatizadeh A. A. A critical review on recent proton exchange membranes applied in microbial fuel cells for renewable energy recovery. J. Cleaner Prod. 2020;264:121446.
Singh S. Modi A. Verma N. Enhanced power generation using a novel polymer-coated nanoparticles dispersed-carbon micro-nanofibers-based air-cathode in a membrane-less single chamber microbial fuel cell. Int. J. Hydrogen Energy. 2016;41:1237–1247. doi: 10.1016/j.ijhydene.2015.10.099. DOI
Nadaf A. Gupta A. Hasan N. Ahmad S. Kesharwani P. Ahmad F. J. Recent update on electrospinning and electrospun nanofibers: current trends and their applications. RSC Adv. 2022;12:23808–23828. PubMed PMC
Li Z. Cui Z. Zhao L. Hussain N. Zhao Y. Yang C. Jiang X. Li L. Song J. Zhang B. High-throughput production of kilogram-scale nanofibers by Kármán vortex solution blow spinning. Sci. Adv. 2022;8:eabn3690. PubMed PMC
HMTShirazi R. Mohammadi T. Asadi A. A. Tofighy M. A. Electrospun nanofiber affinity membranes for water treatment applications: A review. J. Water Proc.engineering. 2022;47:102795. doi: 10.1016/j.jwpe.2022.102795. DOI
Yener F., Jirsak O. and Gemci R., Using a Range of PVB Spinning Solution to Acquire Diverse Morphology for Electrospun Nanofibres, 2012
Yener F. and Jirsak O., in, Improving Performance of Polyvinyl Butyral Electrospinning, 2011, pp. 356–361
Yalcinkaya F. Experimental study on electrospun polyvinyl butyral nanofibers using a non-solvent system. Fibers Polym. 2015;16:2544–2551. doi: 10.1007/s12221-015-5525-1. DOI
Yalcinkaya B., Yener F., Cengiz-Çallıoğlu F. and Jirsak O., in, Effect of Concentration and Salt Additive on Taylor Cone Structure, 2012, pp. 200–203
Yener F. and Jirsak O., in, Effect of Nonsolvent on Electrospinning Performance and Nanofiber Properties, 2012, pp. 471–475
Choi J. Wycisk R. Zhang W. Pintauro P. N. Lee K. M. Mather P. T. High Conductivity Perfluorosulfonic Acid Nanofiber Composite Fuel-Cell Membranes. ChemSusChem. 2010;3:1245–1248. doi: 10.1002/cssc.201000220. PubMed DOI
Tamura T. Kawakami H. Aligned Electrospun Nanofiber Composite Membranes for Fuel Cell Electrolytes. Nano Lett. 2010;10:1324–1328. doi: 10.1021/nl1007079. PubMed DOI
Wang H. Li X. Zhuang X. Cheng B. Wang W. Kang W. Shi L. Li H. Modification of Nafion membrane with biofunctional SiO2 nanofiber for proton exchange membrane fuel cells. J. Power Sources. 2017;340:201–209. doi: 10.1016/j.jpowsour.2016.11.072. DOI
Yusof M. R. Shamsudin R. Zakaria S. Azmi Abdul Hamid M. Yalcinkaya F. Abdullah Y. Yacob N. Electron-Beam Irradiation of the PLLA/CMS/β-TCP Composite Nanofibers Obtained by Electrospinning. Polymers. 2020;12(7):1593. doi: 10.3390/polym12071593. PubMed DOI PMC
Yusof M. R. Shamsudin R. Abdullah Y. Yalcinkaya F. Yaacob N. Electrospinning of carboxymethyl starch/poly(L-lactide acid) composite nanofiber. Polym. Adv. Technol. 2018;29:1843–1851. doi: 10.1002/pat.4292. DOI
Khan N. Anwer A. H. Sultana S. Ibhadon A. Khan M. Z. Effective toxicity assessment of synthetic dye in microbial fuel cell biosensor with spinel nanofiber anode. J. Environ. Chem. Eng. 2022;10:107313. doi: 10.1016/j.jece.2022.107313. DOI
Huang L. Bui N.-N. Manickam S. S. McCutcheon J. R. Controlling electrospun nanofiber morphology and mechanical properties using humidity. J. Polym. Sci., Part B: Polym. Phys. 2011;49:1734–1744. doi: 10.1002/polb.22371. DOI
Xu M. Wu L. Zhu M. Wang Z. Huang Z.-H. Wang M.-X. Self-supporting nitrogen-doped reduced graphene oxide@carbon nanofiber hybrid membranes as high-performance integrated air cathodes in microbial fuel cells. Carbon. 2022;193:242–257. doi: 10.1016/j.carbon.2022.03.024. DOI
Eom H. Joo H. J. Kim S. C. Kim S. S. Properties of carbon-based nanofiber with Pd and its application to microbial fuel cells electrode. Environ. Technol. Innovation. 2020;19:100800. doi: 10.1016/j.eti.2020.100800. DOI
Jiang N. Huang M. Li J. Song J. Zheng S. Gao Y. Shao M. Li Y. Enhanced bioelectricity output of microbial fuel cells via electrospinning zeolitic imidazolate framework-67/polyacrylonitrile carbon nanofiber cathode. Bioresour. Technol. 2021;337:125358. doi: 10.1016/j.biortech.2021.125358. PubMed DOI
Gong M., Li X., Hu L., Xu H., Yang C., Luo Y., Li S., Yin C., Gan M. and Zhou L., Preparation and Characterization of Palladium Nanoparticle-Embedded Carbon Nanofiber Membranes via Electrospinning and Carbonization Strategy, (2024), 10.2139/ssrn.4720490 PubMed DOI PMC
Santoro C. Stadlhofer A. Hacker V. Squadrito G. Schröder U. Li B. Activated carbon nanofibers (ACNF) as cathode for single chamber microbial fuel cells (SCMFCs) J. Power Sources. 2013;243:499–507. doi: 10.1016/j.jpowsour.2013.06.061. DOI
Cong K. Radtke M. Stumpf S. Schröter B. McMillan D. G. G. Rettenmayr M. Ignaszak A. Electrochemical stability of the polymer-derived nitrogen-doped carbon: an elusive goal? Mater. Renew. Sustain. Energy. 2015;4:5. doi: 10.1007/s40243-015-0046-9. DOI
Yang D.-S. Chaudhari S. Rajesh K. P. Yu J.-S. Preparation of Nitrogen-Doped Porous Carbon Nanofibers and the Effect of Porosity, Electrical Conductivity, and Nitrogen Content on Their Oxygen Reduction Performance. ChemCatChem. 2014;6:1236–1244. doi: 10.1002/cctc.201400035. DOI
Massaglia G. Margaria V. Sacco A. Castellino M. Chiodoni A. Pirri F. C. Quaglio M. N-doped carbon nanofibers as catalyst layer at cathode in single chamber Microbial Fuel Cells. Int. J. Hydrogen Energy. 2019;44:4442–4449. doi: 10.1016/j.ijhydene.2018.10.008. DOI
Kodali M. Santoro C. Serov A. Kabir S. Artyushkova K. Matanovic I. Atanassov P. Air Breathing Cathodes for Microbial Fuel Cell using Mn-, Fe-, Co- and Ni-containing Platinum Group Metal-free Catalysts. Electrochim. Acta. 2017;231:115–124. doi: 10.1016/j.electacta.2017.02.033. PubMed DOI PMC
Sun Y. Li H. Wang J. Liu Y. Guo S. Li C. One-piece adhesive-free molding polyvinylidene fluoride @Ag nanofiber membrane for efficient oxygen reduction reaction in microbial fuel cells. J. Environ. Chem. Eng. 2022;10:108898. doi: 10.1016/j.jece.2022.108898. DOI
Kartick B. Srivastava S. K. Chandra A. Graphene/Nickel Nanofiber Hybrids for Catalytic and Microbial Fuel Cell Applications. J. Nanosci. Nanotechnol. 2016;16:303–311. doi: 10.1166/jnn.2016.10667. PubMed DOI
Ahmed J. Kim H. J. Kim S. Polyaniline Nanofiber/Carbon Black Composite as Oxygen Reduction Catalyst for Air Cathode Microbial Fuel Cells. J. Electrochem. Soc. 2012;159:B497. doi: 10.1149/2.049205jes. DOI
Leong J. X. Daud W. R. W. Ghasemi M. Liew K. B. Ismail M. Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renewable Sustainable Energy Rev. 2013;28:575–587. doi: 10.1016/j.rser.2013.08.052. DOI
Koók L. Dörgő G. Bakonyi P. Rózsenberszki T. Nemestóthy N. Bélafi-Bakó K. Abonyi J. Directions of membrane separator development for microbial fuel cells: A retrospective analysis using frequent itemset mining and descriptive statistical approach. J. Power Sources. 2020;478:229014. doi: 10.1016/j.jpowsour.2020.229014. DOI
Khadem D. J., Yaakob Z., Shahgaldi S., Ghasemi M. and Wan Daud W. R., in, Synthesis and Characterization of PES/TiO2 Nanofibers Membrane, Trans Tech Publ, 2011, pp. 613–619
Tang X. Guo K. Li H. Du Z. Tian J. Microfiltration membrane performance in two-chamber microbial fuel cells. Biochem. Eng. J. 2010;52:194–198. doi: 10.1016/j.bej.2010.08.007. DOI
Dong B. Gwee L. Salas-de la Cruz D. Winey K. I. Elabd Y. A. Super Proton Conductive High-Purity Nafion Nanofibers. Nano Lett. 2010;10:3785–3790. doi: 10.1021/nl102581w. PubMed DOI
Jung H.-Y. Roh S.-H. Polyvinylidene fluoride nanofiber composite membrane coated with perfluorinated sulfuric acid for microbial fuel cell application. J. Nanosci. Nanotechnol. 2020;20:5711–5715. doi: 10.1166/jnn.2020.17622. PubMed DOI
Liu F. Kim I. S. Miyatake K. Proton-conductive aromatic membranes reinforced with poly(vinylidene fluoride) nanofibers for high-performance durable fuel cells. Sci. Adv. 2023;9:eadg9057. doi: 10.1126/sciadv.adg9057. PubMed DOI PMC
Chu J. Ou Y. Cheng F. Liu H. Luo N. Hu F. Wen S. Gong C. Achieving better balance on the mechanical stability and conduction performance of sulfonated poly(ether ether ketone) proton exchange membranes through polydopamine/polyethyleneimine co-modified poly(vinylidene fluoride) nanofiber as support. Int. J. Hydrogen Energy. 2024;50:1381–1390. doi: 10.1016/j.ijhydene.2023.10.298. DOI
Essa W. K. Yasin S. A. Saeed I. A. Ali G. A. M. Nanofiber-Based Face Masks and Respirators as COVID-19 Protection: A Review. Membranes. 2021;11(4):250. doi: 10.3390/membranes11040250. PubMed DOI PMC
R. and M. ltd, Nanofiber Market – Growth, Trends, COVID-19 Impact, and Forecasts, 2023–2028, https://www.researchandmarkets.com/reports/4514872/nanofiber-market-growth-trends-covid-19, accessed May 25, 2023
Bryjak M. Hodge H. Dach B. Modification of porous polyacrylonitrile membrane. Angew. Makromol. Chem. Chemie. 1998;260:25–29.
Li H. Sun Y. Wang J. Liu Y. Li C. Nanoflower-branch LDHs and CoNi alloy derived from electrospun carbon nanofibers for efficient oxygen electrocatalysis in microbial fuel cells. Appl. Catal., B. 2022;307:121136. doi: 10.1016/j.apcatb.2022.121136. DOI