Electrically induced and detected Néel vector reversal in a collinear antiferromagnet
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30409971
PubMed Central
PMC6224378
DOI
10.1038/s41467-018-07092-2
PII: 10.1038/s41467-018-07092-2
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Antiferromagnets are enriching spintronics research by many favorable properties that include insensitivity to magnetic fields, neuromorphic memory characteristics, and ultra-fast spin dynamics. Designing memory devices with electrical writing and reading is one of the central topics of antiferromagnetic spintronics. So far, such a combined functionality has been demonstrated via 90° reorientations of the Néel vector generated by the current-induced spin orbit torque and sensed by the linear-response anisotropic magnetoresistance. Here we show that in the same antiferromagnetic CuMnAs films as used in these earlier experiments we can also control 180° Néel vector reversals by switching the polarity of the writing current. Moreover, the two stable states with opposite Néel vector orientations in this collinear antiferromagnet can be electrically distinguished by measuring a second-order magnetoresistance effect. We discuss the general magnetic point group symmetries allowing for this electrical readout effect and its specific microscopic origin in CuMnAs.
Hitachi Cambridge Laboratory Hitachi Europe LTD JJ Thomson Avenue Cambridge CB3 0HE United Kingdom
Institut für Festkörper und Materialphysik Technische Universität Dresden 01062 Dresden Germany
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 160 00 Prague 6 Czech Republic
Max Planck Institute for Chemical Physics of Solids 01187 Dresden Germany
School of Physics and Astronomy University Of Nottingham NG7 2RD Nottingham United Kingdom
Zobrazit více v PubMed
Chappert C, Fert A, Van Dau FN. The emergence of spin electronics in data storage. Nat. Mater. 2007;6:813–823. doi: 10.1038/nmat2024. PubMed DOI
MacDonald AH, Tsoi M. Antiferromagnetic metal spintronics. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011;369:3098–3114. doi: 10.1098/rsta.2011.0014. PubMed DOI
Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotechnol. 2016;11:231–241. doi: 10.1038/nnano.2016.18. PubMed DOI
Baltz V, et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018;90:015005. doi: 10.1103/RevModPhys.90.015005. DOI
Jungwirth T, et al. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 2018;14:200–203. doi: 10.1038/s41567-018-0063-6. DOI
Železný J, Wadley P, Olejník K, Hoffmann A, Ohno H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 2018;14:220–228. doi: 10.1038/s41567-018-0062-7. DOI
Grimmer H. General relations for transport properties in magnetically ordered crystals. Acta Crystallogr. Sect. A. 1993;49:763–771. doi: 10.1107/S0108767393003770. DOI
Chen H, Niu Q, MacDonald AH. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 2014;112:017205. doi: 10.1103/PhysRevLett.112.017205. PubMed DOI
Nakatsuji S, Kiyohara N, Higo T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature. 2015;527:212–215. doi: 10.1038/nature15723. PubMed DOI
Nayak AK, et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2016;2:e1501870. doi: 10.1126/sciadv.1501870. PubMed DOI PMC
Liu ZQ, et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 2018;1:172–177. doi: 10.1038/s41928-018-0040-1. DOI
Železný J, et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 2014;113:157201. doi: 10.1103/PhysRevLett.113.157201. PubMed DOI
Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI
Roy P, Otxoa RM, Wunderlich J. Robust picosecond writing of a layered antiferromagnet by staggered spin-orbit fields. Phys. Rev. B. 2016;94:014439. doi: 10.1103/PhysRevB.94.014439. DOI
Olejník K, et al. Antiferromagnetic CuMnAs multi-level memory cell with microelectronic compatibility. Nat. Commun. 2017;8:15434. doi: 10.1038/ncomms15434. PubMed DOI PMC
Bodnar SY, et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 2018;9:348. doi: 10.1038/s41467-017-02780-x. PubMed DOI PMC
Meinert M, Graulich D, Matalla-Wagner T. Key role of thermal activation in the electrical switching of antiferromagnetic Mn2Au. Phys. Rev. Appl. 2018;9:064040. doi: 10.1103/PhysRevApplied.9.064040. DOI
Zhou XF, et al. Strong orientation-dependent spin-orbit torque in thin films of the antiferromagnet Mn2Au. Phys. Rev. Appl. 2018;9:054028. doi: 10.1103/PhysRevApplied.9.054028. DOI
Wadley P, et al. Tetragonal phase of epitaxial room-temperature antiferromagnet CuMnAs. Nat. Commun. 2013;4:2322. doi: 10.1038/ncomms3322. PubMed DOI
Grzybowski MJ, et al. Imaging current-induced switching of antiferromagnetic domains in CuMnAs. Phys. Rev. Lett. 2017;118:057701. doi: 10.1103/PhysRevLett.118.057701. PubMed DOI
Marti X, et al. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 2014;13:367–374. doi: 10.1038/nmat3861. PubMed DOI
Kriegner D, et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 2016;7:11623. doi: 10.1038/ncomms11623. PubMed DOI PMC