Ultrashort spin-orbit torque generated by femtosecond laser pulses
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
36513672
PubMed Central
PMC9747954
DOI
10.1038/s41598-022-24808-z
PII: 10.1038/s41598-022-24808-z
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
To realize the very objective of spintronics, namely the development of ultra-high frequency and energy-efficient electronic devices, an ultrafast and scalable approach to switch magnetic bits is required. Magnetization switching with spin currents generated by the spin-orbit interaction at ferromagnetic/non-magnetic interfaces is one of such scalable approaches, where the ultimate switching speed is limited by the Larmor precession frequency. Understanding the magnetization precession dynamics induced by spin-orbit torques (SOTs) is therefore of great importance. Here we demonstrate generation of ultrashort SOT pulses that excite Larmor precession at an epitaxial Fe/GaAs interface by converting femtosecond laser pulses into high-amplitude current pulses in an electrically biased p-i-n photodiode. We control the polarity, amplitude, and duration of the current pulses and, most importantly, also their propagation direction with respect to the crystal orientation. The SOT origin of the excited Larmor precession was revealed by a detailed analysis of the precession phase and amplitude at different experimental conditions.
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Prague 2 Czech Republic
Institute of Physics ASCR v v i Cukrovarnická 10 162 00 Prague 6 Czech Republic
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK
Zobrazit více v PubMed
Bernevig BA, Vafek O. Piezo-magnetoelectric effects in p-doped semiconductors. Phys. Rev. B. 2005;72:033203. doi: 10.1103/PhysRevB.72.033203. DOI
Manchon A, Zhang S. Theory of spin torque due to spin-orbit coupling. Phys. Rev. B. 2009;79:094422. doi: 10.1103/PhysRevB.79.094422. DOI
Chernyshov A, et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 2009;5:656–659. doi: 10.1038/nphys1362. DOI
Miron IM, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature. 2011;476:189–193. doi: 10.1038/nature10309. PubMed DOI
Liu L, et al. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science. 2012;336(6081):555–558. doi: 10.1126/science.1218197. PubMed DOI
Gmitra M, Matos-Abiague A, Draxl C, Fabian J. Magnetic control of spin-orbit fields: A first-principles study of Fe/GaAs junctions. Phys. Rev. Lett. 2013;111:036603. doi: 10.1103/PhysRevLett.111.036603. PubMed DOI
Chen L, Matsukura F, Ohno H. Direct-current voltages in (Ga, Mn)As structures induced by ferromagnetic resonance. Nat. Commun. 2013;4:2055. doi: 10.1038/ncomms3055. PubMed DOI
Chen L, et al. Robust spin-orbit torque and spin-galvanic effect at the Fe/GaAs (001) interface at room temperature. Nat. Commun. 2016;7:13802. doi: 10.1038/ncomms13802. PubMed DOI PMC
Acremann Y, et al. Ultrafast generation of magnetic fields in a Schottky diode. Nature. 2001;414:51. doi: 10.1038/35102026. PubMed DOI
Van Hoof C, Deneffe K, De Boeck J, Arent DJ, Borghs G. Franz-Keldysh oscillations originating from a well-controlled electric field in the GaAs depletion region. Appl. Phys. Lett. 1989;54:608. doi: 10.1063/1.100893. DOI
Airaksinen VM, Lipsanen HK. Photoreflectance study of photovoltage effects in GaAs diode structures. Appl. Phys. Lett. 1992;60:2110. doi: 10.1063/1.107105. DOI
Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotech. 2016;11:231. doi: 10.1038/nnano.2016.18. PubMed DOI
Baltz V, et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018;90:015005. doi: 10.1103/RevModPhys.90.015005. DOI
Němec P, Fiebig M, Kampfrath T, Kimel AV. Antiferromagnetic opto-spintronics. Nat. Phys. 2018;14:229. doi: 10.1038/s41567-018-0051-x. DOI
Khamari SK, Porwal S, Sharma TK. Temperature dependent spin Hall conductivity in n-GaAs epitaxial layers measured by inverse spin Hall effect. J. Appl. Phys. 2018;124:065702. doi: 10.1063/1.5037198. DOI
Dyakonov, M. I. & Perel, V. I. in Optical Orientation, edited by Meyer, F. & Zakharchenya, B. P. (North-Holland, 1984), pp. 11–71.
Ando K, et al. Electrically tunable spin injector free from the impedance mismatch problem. Nat. Mater. 2011;10:655–659. doi: 10.1038/nmat3052. PubMed DOI
Gambardella P, Miron IM. Current-induced spin-orbit torques. Phil. Trans. R. Soc. A. 2011;369:3175–3197. doi: 10.1098/rsta.2010.0336. PubMed DOI
Silsbee RH. Spin–orbit induced coupling of charge current and spin polarization. J. Phys.: Condens. Matter. 2004;16:R179–R207.
Buess M, Knowles TPJ, Ramsperger U, Pescia D, Back CH. Phase-resolved pulsed precessional motion at a Schottky barrier. Phys. Rev. B. 2004;69:174422. doi: 10.1103/PhysRevB.69.174422. DOI
Yuan H, et al. Photoinduced spin precession in Fe/GaAs(001) heterostructure with low power excitation. Appl. Phys. Express. 2013;6:073008. doi: 10.7567/APEX.6.073008. DOI
Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI
Bodnar SY, et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 2018;9:348. doi: 10.1038/s41467-017-02780-x. PubMed DOI PMC
Godinho J, et al. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. Nat. Commun. 2018;9:4686. doi: 10.1038/s41467-018-07092-2. PubMed DOI PMC
Janda T, et al. Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs. Phys. Rev. Mater. 2020;4:094413. doi: 10.1103/PhysRevMaterials.4.094413. DOI
Siddiqui SA, et al. Metallic antiferromagnets. J. Appl. Phys. 2020;128:040904. doi: 10.1063/5.0009445. DOI
Ohno Y, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature. 1999;402:790–792. doi: 10.1038/45509. DOI
Fiederling R, et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature. 1999;402:787–790. doi: 10.1038/45502. DOI
Surýnek M, Nádvorník L, Schmoranzerová E, Němec P. Quasi-nondegenerate pump–probe magnetooptical experiment in GaAs/AlGaAs heterostructure based on spectral filtration. New. J. Phys. 2020;22:093065. doi: 10.1088/1367-2630/abb54b. DOI
Surýnek M, et al. Investigation of magnetic anisotropy and heat dissipation in thin films of compensated antiferromagnet CuMnAs by pump–probe experiment. J. Appl. Phys. 2020;127:233904. doi: 10.1063/5.0006185. DOI
Carruthers TF, Weller JF. Picosecond optical mixing in fast photodetectors. Appl. Phys. Lett. 1986;48:460. doi: 10.1063/1.96530. DOI
Jacobsen RH, Birkelund K, Holst T, Uhd Jepsen P, Keiding SR. Interpretation of photocurrent correlation measurements used for ultrafast photoconductive switch characterization. J. Appl. Phys. 1996;79:2649. doi: 10.1063/1.361135. DOI
Wang Z, et al. Spin dynamics triggered by subterahertz magnetic field pulses. J. Appl. Phys. 2008;103:123905. doi: 10.1063/1.2940734. DOI