Ultrashort spin-orbit torque generated by femtosecond laser pulses

. 2022 Dec 13 ; 12 (1) : 21550. [epub] 20221213

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36513672
Odkazy

PubMed 36513672
PubMed Central PMC9747954
DOI 10.1038/s41598-022-24808-z
PII: 10.1038/s41598-022-24808-z
Knihovny.cz E-zdroje

To realize the very objective of spintronics, namely the development of ultra-high frequency and energy-efficient electronic devices, an ultrafast and scalable approach to switch magnetic bits is required. Magnetization switching with spin currents generated by the spin-orbit interaction at ferromagnetic/non-magnetic interfaces is one of such scalable approaches, where the ultimate switching speed is limited by the Larmor precession frequency. Understanding the magnetization precession dynamics induced by spin-orbit torques (SOTs) is therefore of great importance. Here we demonstrate generation of ultrashort SOT pulses that excite Larmor precession at an epitaxial Fe/GaAs interface by converting femtosecond laser pulses into high-amplitude current pulses in an electrically biased p-i-n photodiode. We control the polarity, amplitude, and duration of the current pulses and, most importantly, also their propagation direction with respect to the crystal orientation. The SOT origin of the excited Larmor precession was revealed by a detailed analysis of the precession phase and amplitude at different experimental conditions.

Zobrazit více v PubMed

Bernevig BA, Vafek O. Piezo-magnetoelectric effects in p-doped semiconductors. Phys. Rev. B. 2005;72:033203. doi: 10.1103/PhysRevB.72.033203. DOI

Manchon A, Zhang S. Theory of spin torque due to spin-orbit coupling. Phys. Rev. B. 2009;79:094422. doi: 10.1103/PhysRevB.79.094422. DOI

Chernyshov A, et al. Evidence for reversible control of magnetization in a ferromagnetic material by means of spin–orbit magnetic field. Nat. Phys. 2009;5:656–659. doi: 10.1038/nphys1362. DOI

Miron IM, et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature. 2011;476:189–193. doi: 10.1038/nature10309. PubMed DOI

Liu L, et al. Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum. Science. 2012;336(6081):555–558. doi: 10.1126/science.1218197. PubMed DOI

Gmitra M, Matos-Abiague A, Draxl C, Fabian J. Magnetic control of spin-orbit fields: A first-principles study of Fe/GaAs junctions. Phys. Rev. Lett. 2013;111:036603. doi: 10.1103/PhysRevLett.111.036603. PubMed DOI

Chen L, Matsukura F, Ohno H. Direct-current voltages in (Ga, Mn)As structures induced by ferromagnetic resonance. Nat. Commun. 2013;4:2055. doi: 10.1038/ncomms3055. PubMed DOI

Chen L, et al. Robust spin-orbit torque and spin-galvanic effect at the Fe/GaAs (001) interface at room temperature. Nat. Commun. 2016;7:13802. doi: 10.1038/ncomms13802. PubMed DOI PMC

Acremann Y, et al. Ultrafast generation of magnetic fields in a Schottky diode. Nature. 2001;414:51. doi: 10.1038/35102026. PubMed DOI

Van Hoof C, Deneffe K, De Boeck J, Arent DJ, Borghs G. Franz-Keldysh oscillations originating from a well-controlled electric field in the GaAs depletion region. Appl. Phys. Lett. 1989;54:608. doi: 10.1063/1.100893. DOI

Airaksinen VM, Lipsanen HK. Photoreflectance study of photovoltage effects in GaAs diode structures. Appl. Phys. Lett. 1992;60:2110. doi: 10.1063/1.107105. DOI

Jungwirth T, Marti X, Wadley P, Wunderlich J. Antiferromagnetic spintronics. Nat. Nanotech. 2016;11:231. doi: 10.1038/nnano.2016.18. PubMed DOI

Baltz V, et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 2018;90:015005. doi: 10.1103/RevModPhys.90.015005. DOI

Němec P, Fiebig M, Kampfrath T, Kimel AV. Antiferromagnetic opto-spintronics. Nat. Phys. 2018;14:229. doi: 10.1038/s41567-018-0051-x. DOI

Khamari SK, Porwal S, Sharma TK. Temperature dependent spin Hall conductivity in n-GaAs epitaxial layers measured by inverse spin Hall effect. J. Appl. Phys. 2018;124:065702. doi: 10.1063/1.5037198. DOI

Dyakonov, M. I. & Perel, V. I. in Optical Orientation, edited by Meyer, F. & Zakharchenya, B. P. (North-Holland, 1984), pp. 11–71.

Ando K, et al. Electrically tunable spin injector free from the impedance mismatch problem. Nat. Mater. 2011;10:655–659. doi: 10.1038/nmat3052. PubMed DOI

Gambardella P, Miron IM. Current-induced spin-orbit torques. Phil. Trans. R. Soc. A. 2011;369:3175–3197. doi: 10.1098/rsta.2010.0336. PubMed DOI

Silsbee RH. Spin–orbit induced coupling of charge current and spin polarization. J. Phys.: Condens. Matter. 2004;16:R179–R207.

Buess M, Knowles TPJ, Ramsperger U, Pescia D, Back CH. Phase-resolved pulsed precessional motion at a Schottky barrier. Phys. Rev. B. 2004;69:174422. doi: 10.1103/PhysRevB.69.174422. DOI

Yuan H, et al. Photoinduced spin precession in Fe/GaAs(001) heterostructure with low power excitation. Appl. Phys. Express. 2013;6:073008. doi: 10.7567/APEX.6.073008. DOI

Wadley P, et al. Electrical switching of an antiferromagnet. Science. 2016;351:587–590. doi: 10.1126/science.aab1031. PubMed DOI

Bodnar SY, et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 2018;9:348. doi: 10.1038/s41467-017-02780-x. PubMed DOI PMC

Godinho J, et al. Electrically induced and detected Néel vector reversal in a collinear antiferromagnet. Nat. Commun. 2018;9:4686. doi: 10.1038/s41467-018-07092-2. PubMed DOI PMC

Janda T, et al. Magneto-Seebeck microscopy of domain switching in collinear antiferromagnet CuMnAs. Phys. Rev. Mater. 2020;4:094413. doi: 10.1103/PhysRevMaterials.4.094413. DOI

Siddiqui SA, et al. Metallic antiferromagnets. J. Appl. Phys. 2020;128:040904. doi: 10.1063/5.0009445. DOI

Ohno Y, et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature. 1999;402:790–792. doi: 10.1038/45509. DOI

Fiederling R, et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature. 1999;402:787–790. doi: 10.1038/45502. DOI

Surýnek M, Nádvorník L, Schmoranzerová E, Němec P. Quasi-nondegenerate pump–probe magnetooptical experiment in GaAs/AlGaAs heterostructure based on spectral filtration. New. J. Phys. 2020;22:093065. doi: 10.1088/1367-2630/abb54b. DOI

Surýnek M, et al. Investigation of magnetic anisotropy and heat dissipation in thin films of compensated antiferromagnet CuMnAs by pump–probe experiment. J. Appl. Phys. 2020;127:233904. doi: 10.1063/5.0006185. DOI

Carruthers TF, Weller JF. Picosecond optical mixing in fast photodetectors. Appl. Phys. Lett. 1986;48:460. doi: 10.1063/1.96530. DOI

Jacobsen RH, Birkelund K, Holst T, Uhd Jepsen P, Keiding SR. Interpretation of photocurrent correlation measurements used for ultrafast photoconductive switch characterization. J. Appl. Phys. 1996;79:2649. doi: 10.1063/1.361135. DOI

Wang Z, et al. Spin dynamics triggered by subterahertz magnetic field pulses. J. Appl. Phys. 2008;103:123905. doi: 10.1063/1.2940734. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...