Investigation of 23 Bile Acids in Liver Bile in Benign and Malignant Biliary Stenosis: A Pilot Study
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31929784
PubMed Central
PMC6935816
DOI
10.1155/2019/5371381
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Differential diagnosis between benign and malignant biliary stenosis can be difficult in clinical practice. Histology of biopsy specimens is often indeterminate. Laboratory markers (serum bilirubin > 75 μmol/L, carbohydrate antigen 19-9 > 400 U/mL) and the length of stenosis (>15 mm) can be helpful but are not specific enough. The aim of this study was to investigate bile acids in liver bile of patients with benign and malignant biliary stenosis and controls without stenosis. A total of 73 patients entered the study: 7 subjects with benign biliary stenosis (6 men, 1 woman; 68 ± 13 years old), 21 with malignant biliary stenosis (15 men, 6 women; 72 ± 14 years old), and 45 patients without biliary stenosis (22 men, 23 women; 70 ± 13 years old); out of those, 25 subjects have and 20 do not have choledocholithiasis. Twenty-three different bile acids were investigated by high-performance liquid chromatography/mass spectrometry. Serum total bilirubin was significantly higher in patients with malignant biliary stenosis compared with nonstenotic controls (p = 0.005). Significant relationship (r > 0.7) was found between several pairs of bile acids. Significantly lower bile acid concentrations in malignant biliary stenosis compared to controls without stenosis were found for GLCA (p = 0.032), GUDCA (p = 0.032), GCDCA (p = 0.006), GDCA (p = 0.031), GHCA (p = 0.005), TUDCA (p = 0.044), and TDCA (p = 0.036). Significant difference in cholic acid was found between benign and malignant stenosis (p = 0.022). Analysis of bile acids might be helpful in the differential diagnosis of malignant and benign biliary stenosis. More patients need to be enrolled in further studies so that the real diagnostic yield of bile acids can be determined.
Zobrazit více v PubMed
Bain V. G., Abraham N., Jhangri G. S., et al. Prospective study of biliary strictures to determine the predictors of malignancy. Canadian Journal of Gastroenterology. 2000;14(5):397–402. doi: 10.1155/2000/467567. PubMed DOI
Buis C. I., Geuken E., Visser D. S., et al. Altered bile composition after liver transplantation is associated with the development of nonanastomotic biliary strictures. Journal of Hepatology. 2009;50(1):69–79. doi: 10.1016/j.jhep.2008.07.032. PubMed DOI
Park J. Y., Park B. K., Ko J. S., Bang S., Song S. Y., Chung J. B. Bile acid analysis in biliary tract cancer. Yonsei Medical Journal. 2006;47(6):817–825. doi: 10.3349/ymj.2006.47.6.817. PubMed DOI PMC
Lankisch T. O., Metzger J., Negm A. A., et al. Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis. Hepatology. 2011;53(3):875–884. doi: 10.1002/hep.24103. PubMed DOI
Jusakul A., Khuntikeo N., Haigh W. G., et al. Identification of biliary bile acids in patients with benign biliary diseases, hepatocellular carcinoma and cholangiocarcinoma. Asian Pacific Journal of Cancer Prevention. 2012;13:77–82. PubMed
Metzger J., Negm A. A., Plentz R. R., et al. Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders. Gut. 2013;62(1):122–130. doi: 10.1136/gutjnl-2012-302047. PubMed DOI
Arbelaiz A., Azkargorta M., Krawczyk M., et al. Serum extracellular vesicles contain protein biomarkers for primary sclerosing cholangitis and cholangiocarcinoma. Hepatology. 2017;66(4):1125–1143. doi: 10.1002/hep.29291. PubMed DOI
Loosen S. H., Roderburg C., Kauertz K. L., et al. Elevated levels of circulating osteopontin are associated with a poor survival after resection of cholangiocarcinoma. Journal of Hepatology. 2017;67(4):749–757. doi: 10.1016/j.jhep.2017.06.020. PubMed DOI
Mischak H. Method and marker for the diagnosis of a bile duct stricture and of a cholangiocellular carcinoma in bile. US Patent US20140027283A1, 2014.
Voigtländer T., Metzger J., Schönemeier B., et al. A combined bile and urine proteomic test for cholangiocarcinoma diagnosis in patients with biliary strictures of unknown origin. United European Gastroenterology Journal. 2017;5(5):668–676. doi: 10.1177/2050640616687836. PubMed DOI PMC
Galle P. R., Theilmann L., Raedsch R., Otto G., Stiehl A. Ursodeoxycholate reduces hepatotoxicity of bile salts in primary human hepatocytes. Hepatology. 1990;12(3):486–491. doi: 10.1002/hep.1840120307. PubMed DOI
Schmucker D. L., Ohta M., Kanai S., Sato Y., Kitani K. Hepatic injury induced by bile salts: correlation between biochemical and morphological events. Hepatology. 1990;12(5):1216–1221. doi: 10.1002/hep.1840120523. PubMed DOI
Arrese M., Trauner M. Molecular aspects of bile formation and cholestasis. Trends in Molecular Medicine. 2003;9(12):558–564. doi: 10.1016/j.molmed.2003.10.002. PubMed DOI
Alvaro D., Gigliozzi A., Attili A. F. Regulation and deregulation of cholangiocyte proliferation. Journal of Hepatology. 2000;33(2):333–340. doi: 10.1016/S0168-8278(00)80377-3. PubMed DOI
Alpini G., Glaser S., Alvaro D., et al. Bile acid depletion and repletion regulate cholangiocyte growth and secretion by a phosphatidylinositol 3-kinase–dependent pathway in rats. Gastroenterology. 2002;123(4):1226–1237. doi: 10.1053/gast.2002.36055. PubMed DOI
Xia X., Francis H., Glaser S., Alpini G., LeSage G. Bile acid interactions with cholangiocytes. World Journal of Gastroenterology. 2006;12(22):3553–3563. doi: 10.3748/wjg.v12.i22.3553. PubMed DOI PMC
Lozano E., Sanchez-Vicente L., Monte M. J., et al. Cocarcinogenic effects of intrahepatic bile acid accumulation in cholangiocarcinoma development. Molecular Cancer Research. 2014;12(1):91–100. doi: 10.1158/1541-7786.MCR-13-0503. PubMed DOI
Zuo P., Dobbins R. L., O'Connor-Semmes R. L., Young M. A. A systems model for ursodeoxycholic acid metabolism in healthy and patients with primary biliary cirrhosis. CPT: Pharmacometrics & Systems Pharmacology. 2016;5(8):418–426. doi: 10.1002/psp4.12100. PubMed DOI PMC