Antibacterial Electrospun Polycaprolactone Nanofibers Reinforced by Halloysite Nanotubes for Tissue Engineering
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
35215658
PubMed Central
PMC8876556
DOI
10.3390/polym14040746
PII: polym14040746
Knihovny.cz E-resources
- Keywords
- antibacterial, biocompatible, electrospinning, erythromycin, halloysite, nanofibers, polycaprolactone, tissue engineering,
- Publication type
- Journal Article MeSH
Due to its slow degradation rate, polycaprolactone (PCL) is frequently used in biomedical applications. This study deals with the development of antibacterial nanofibers based on PCL and halloysite nanotubes (HNTs). Thanks to a combination with HNTs, the prepared nanofibers can be used as low-cost nanocontainers for the encapsulation of a wide variety of substances, including drugs, enzymes, and DNA. In our work, HNTs were used as a nanocarrier for erythromycin (ERY) as a model antibacterial active compound with a wide range of antibacterial activity. Nanofibers based on PCL and HNT/ERY were prepared by electrospinning. The antibacterial activity was evaluated as a sterile zone of inhibition around the PCL nanofibers containing 7.0 wt.% HNT/ERY. The morphology was observed with SEM and TEM. The efficiency of HNT/ERY loading was evaluated with thermogravimetric analysis. It was found that the nanofibers exhibited outstanding antibacterial properties and inhibited both Gram- (Escherichia coli) and Gram+ (Staphylococcus aureus) bacteria. Moreover, a significant enhancement of mechanical properties was achieved. The potential uses of antibacterial, environmentally friendly, nontoxic, biodegradable PCL/HNT/ERY nanofiber materials are mainly in tissue engineering, wound healing, the prevention of bacterial infections, and other biomedical applications.
CONTIPRO a s Dolní Dobrouč 401 56102 Dolní Dobrouč Czech Republic
Department of Pharmaceutical Technology Jadavpur University Kolkata 700032 India
Polymer Institute Slovak Academy of Sciences Dúbravská Cesta 9 84541 Bratislava Slovakia
See more in PubMed
Santos A.C., Pereira I., Reis S., Veiga F., Saleh M., Lvov Y. Biomedical potential of clay nanotube formulations and their toxicity assessment. Expert Opin. Drug Deliv. 2019;16:1169–1182. doi: 10.1080/17425247.2019.1665020. PubMed DOI
Vergaro V., Abdullayev E., Lvov Y.M., Zeitoun A., Cingolani R., Rinaldi R., Leporatti S. Cytocompatibility and uptake of halloysite clay nanotubes. Biomacromolecules. 2010;11:820–826. doi: 10.1021/bm9014446. PubMed DOI
Atyaksheva L.F., Kasyanov I.A. Halloysite, Natural Aluminosilicate Nanotubes: Structural Features and Adsorption Properties (A Review) Pet. Chem. 2021;61:932–950. doi: 10.1134/S0965544121080119. DOI
Papoulis D., Komarneni S., Panagiotaras D. Geochemistry of halloysite-7Å formation from plagioclase in trachyandesite rocks from Limnos Island, Greece. Clay Miner. 2014;49:75–89. doi: 10.1180/claymin.2014.049.1.07. DOI
Hanif M., Jabbar F., Sharif S., Abbas G., Farooq A., Aziz M. Halloysite nanotubes as a new drug-delivery system: A review. Clay Miner. 2016;51:469–477. doi: 10.1180/claymin.2016.051.3.03. DOI
Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B. Halloysite clay minerals—A review. Clay Miner. 2005;40:383–426. doi: 10.1180/0009855054040180. DOI
Leporatti S. Halloysite clay nanotubes as nano-bazookas for drug delivery. Polym. Int. 2017;66:1111–1118. doi: 10.1002/pi.5347. DOI
Jaurand M.C. Chapter 20—An Overview on the Safety of Tubular Clay Minerals. In: Yuan P., Thill A., Bergaya F., editors. Developments in Clay Science. Volume 7. Elsevier; Amsterdam, The Netherlands: 2016. pp. 485–508. DOI
Stavitskaya A., Batasheva S., Vinokurov V., Fakhrullina G., Sangarov V., Lvov Y., Fakhrullin R. Antimicrobial applications of clay nanotube-based composites. Nanomaterials. 2019;9:708. doi: 10.3390/nano9050708. PubMed DOI PMC
Veerabadran N.G., Price R.R., Lvov Y.M. Clay Nanotubes for Encapsulation and Sustained Release of Drugs. Nano. 2007;2:115–120. doi: 10.1142/S1793292007000441. DOI
Abdullayev E., Lvov Y. Halloysite for Controllable Loading and Release. Dev. Clay Sci. 2016;7:554–605. doi: 10.1016/B978-0-08-100293-3.00022-4. DOI
Lazzara G., Riela S., Fakhrullin R.F. Clay-based drug-delivery systems: What does the future hold? Ther. Deliv. 2017;8:633–646. doi: 10.4155/tde-2017-0041. PubMed DOI
Yendluri R., Lvov Y., de Villiers M.M., Vinokurov V., Naumenko E., Tarasova E., Fakhrullin R. Paclitaxel Encapsulated in Halloysite Clay Nanotubes for Intestinal and Intracellular Delivery. J. Pharm. Sci. 2017;106:3131–3139. doi: 10.1016/j.xphs.2017.05.034. PubMed DOI
Massaro M., Cavallaro G., Colletti C.G., D’Azzo G., Guernelli S., Lazzara G., Pieraccini S., Riela S. Halloysite nanotubes for efficient loading, stabilization and controlled release of insulin. J. Colloid Interface Sci. 2018;524:156–164. doi: 10.1016/j.jcis.2018.04.025. PubMed DOI
Tan D., Yuan P., Annabi-Bergaya F., Liu D., Wang L., Liu H., He H. Loading and in vitro release of ibuprofen in tubular halloysite. Appl. Clay Sci. 2014;96:50–55. doi: 10.1016/j.clay.2014.01.018. DOI
Nazir M.S., Mohamad Kassim M.H., Mohapatra L., Gilani M.A., Raza M.R., Majeed K. Nanoclay Reinforced Polymer Composites. Springer; Berlin/Heidelberg, Germany: 2016. Characteristic Properties of Nanoclays and Characterization of Nanoparticulates and Nanocomposites; pp. 35–55. DOI
Santos A.C., Ferreira C., Veiga F., Ribeiro A.J., Panchal A., Lvov Y., Agarwal A. Halloysite clay nanotubes for life sciences applications: From drug encapsulation to bioscaffold. Adv. Colloid Interface Sci. 2018;257:58–70. doi: 10.1016/j.cis.2018.05.007. PubMed DOI
Luo Y., Humayun A., Mills D.K. Surface modification of 3D printed PLA/halloysite composite scaffolds with antibacterial and osteogenic capabilities. Appl. Sci. 2020;10:3971. doi: 10.3390/app10113971. DOI
Wei W., Minullina R., Abdullayev E., Fakhrullin R., Mills D., Lvov Y. Enhanced efficiency of antiseptics with sustained release from clay nanotubes. RSC Adv. 2014;4:488–494. doi: 10.1039/C3RA45011B. DOI
Kurczewska J., Pecyna P., Ratajczak M., Gajęcka M., Schroeder G. Halloysite nanotubes as carriers of vancomycin in alginate-based wound dressing. Saudi Pharm. J. 2017;25:911–920. doi: 10.1016/j.jsps.2017.02.007. PubMed DOI PMC
Avani F., Damoogh S., Mottaghitalab F., Karkhaneh A., Farokhi M. Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2020;69:32–43. doi: 10.1080/00914037.2019.1616201. DOI
Hu X., Liu S., Zhou G., Huang Y., Xie Z., Jing X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release. 2014;185:12–21. doi: 10.1016/j.jconrel.2014.04.018. PubMed DOI
Pierini F., Lanzi M., Lesci I.G., Roveri N. Comparison between inorganic geomimetic chrysotile and multiwalled carbon nanotubes in the preparation of one-dimensional conducting polymer nanocomposites. Fibers Polym. 2015;16:426–433. doi: 10.1007/s12221-015-0426-x. DOI
Hanumantharao S.N., Rao S. Multi-functional electrospun nanofibers from polymer blends for scaffold tissue engineering. Fibers. 2019;7:66. doi: 10.3390/fib7070066. DOI
Gharpure S., Akash A., Ankamwar B. A Review on Antimicrobial Properties of Metal Nanoparticles. J. Nanosci. Nanotechnol. 2019;20:3303–3339. doi: 10.1166/jnn.2020.17677. PubMed DOI
Kováčová M., Špitalská E., Markovic Z., Špitálský Z. Carbon Quantum Dots as Antibacterial Photosensitizers and Their Polymer Nanocomposite Applications. Part. Part. Syst. Charact. 2020;37:1900348. doi: 10.1002/ppsc.201900348. DOI
Shanmuganathan R., LewisOscar F., Shanmugam S., Thajuddin N., Alharbi S.A., Alharbi N.S., Brindhadevi K., Pugazhendhi A. Core/shell nanoparticles: Synthesis, investigation of antimicrobial potential and photocatalytic degradation of Rhodamine B. J. Photochem. Photobiol. B Biol. 2020;202:111729. doi: 10.1016/j.jphotobiol.2019.111729. PubMed DOI
Jee S.C., Kim M., Shinde S.K., Ghodake G.S., Sung J.S., Kadam A.A. Assembling ZnO and Fe3O4 nanostructures on halloysite nanotubes for anti-bacterial assessments. Appl. Surf. Sci. 2020;509:145358. doi: 10.1016/j.apsusc.2020.145358. DOI
Ghosal K., Kováčová M., Humpolíček P., Vajďák J., Bodík M., Špitalský Z. Antibacterial photodynamic activity of hydrophobic carbon quantum dots and polycaprolactone based nanocomposite processed via both electrospinning and solvent casting method. Photodiagnosis Photodyn. Ther. 2021;35:102455. doi: 10.1016/j.pdpdt.2021.102455. PubMed DOI
Kraśniewska K., Galus S., Gniewosz M. Biopolymers-based materials containing silver nanoparticles as active packaging for food applications–A review. Int. J. Mol. Sci. 2020;21:698. doi: 10.3390/ijms21030698. PubMed DOI PMC
Mochane M.J., Motsoeneng T.S., Sadiku E.R., Mokhena T.C., Sefadi J.S. Morphology and properties of electrospun PCL and its composites for medical applications: A mini review. Appl. Sci. 2019;9:2205. doi: 10.3390/app9112205. DOI
Malikmammadov E., Tanir T.E., Kiziltay A., Hasirci V., Hasirci N. PCL and PCL-based materials in biomedical applications. J. Biomater. Sci. Polym. Ed. 2018;29:863–893. doi: 10.1080/09205063.2017.1394711. PubMed DOI
Karuppuswamy P., Reddy Venugopal J., Navaneethan B., Luwang Laiva A., Ramakrishna S. Polycaprolactone nanofibers for the controlled release of tetracycline hydrochloride. Mater. Lett. 2015;141:180–186. doi: 10.1016/j.matlet.2014.11.044. DOI
Jiang S., Chen Y., Duan G., Mei C., Greiner A., Agarwal S. Electrospun nanofiber reinforced composites: A review. Polym. Chem. 2018;9:2685–2720. doi: 10.1039/C8PY00378E. DOI
Pavliňáková V., Fohlerová Z., Pavliňák D., Khunová V., Vojtová L. Effect of halloysite nanotube structure on physical, chemical, structural and biological properties of elastic polycaprolactone/gelatin nanofibers for wound healing applications. Mater. Sci. Eng. C. 2018;91:94–102. doi: 10.1016/j.msec.2018.05.033. PubMed DOI
Williamson M.R., Chang H.I., Coombes A.G.A. Gravity spun polycaprolactone fibres: Controlling release of a hydrophilic macromolecule (ovalbumin) and a lipophilic drug (progesterone) Biomaterials. 2004;25:5053–5060. doi: 10.1016/j.biomaterials.2004.02.027. PubMed DOI
Ferko B., Zeman M., Formica M., Veselý S., Doháňošová J., Moncol J., Olejníková P., Berkeš D., Jakubec P., Dixon D.J., et al. Total Synthesis of Berkeleylactone A. J. Org. Chem. 2019;84:7159–7165. doi: 10.1021/acs.joc.9b00850. PubMed DOI
Abdullayev E., Lvov Y. Halloysite clay nanotubes for controlled release of protective agents. J. Nanosci. Nanotechnol. 2011;11:10007–10026. doi: 10.1166/jnn.2011.5724. PubMed DOI
Duce C., Vecchio Ciprioti S., Ghezzi L., Ierardi V., Tinè M.R. Thermal behavior study of pristine and modified halloysite nanotubes: A modern kinetic study. J. Therm. Anal. Calorim. 2015;121:1011–1019. doi: 10.1007/s10973-015-4741-7. DOI
Nitya G., Nair G.T., Mony U., Chennazhi K.P., Nair S.V. In vitro evaluation of electrospun PCL/nanoclay composite scaffold for bone tissue engineering. J. Mater. Sci. Mater. Med. 2012;23:1749–1761. doi: 10.1007/s10856-012-4647-x. PubMed DOI
Ondreas F., Lepcio P., Zboncak M., Zarybnicka K., Govaert L.E., Jancar J. Effect of Nanoparticle Organization on Molecular Mobility and Mechanical Properties of Polymer Nanocomposites. Macromolecules. 2019;52:6250–6259. doi: 10.1021/acs.macromol.9b01197. DOI
Zboncak M., Ondreas F., Uhlir V., Lepcio P., Michalicka J., Jancar J. Translation of segment scale stiffening into macroscale reinforcement in polymer nanocomposites. Polym. Eng. Sci. 2020;60:587–596. doi: 10.1002/pen.25317. DOI
Jancar J., Ondreas F., Lepcio P., Zboncak M., Zarybnicka K. Mechanical properties of glassy polymers with controlled NP spatial organization. Polym. Test. 2020;90:106640. doi: 10.1016/j.polymertesting.2020.106640. DOI
Xue J., Niu Y., Gong M., Shi R., Chen D., Zhang L., Lvov Y. Electrospun microfiber membranes embedded with drug-loaded clay nanotubes for sustained antimicrobial protection. ACS Nano. 2015;9:1600–1612. doi: 10.1021/nn506255e. PubMed DOI