Room-temperature antiferromagnetic memory resistor

. 2014 Apr ; 13 (4) : 367-74. [epub] 20140126

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid24464243

The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.

] Department of Condensed Matter Physics Faculty of Mathematics and Physics Charles University 12116 Praha 2 Czech Republic [2] Institute of Physics of Materials ASCR v v i Zizkova 22 Brno 616 62 Czech Republic

] Department of Materials Science and Engineering and Department of Physics University of California Berkeley California 94720 USA [2] Department of Condensed Matter Physics Faculty of Mathematics and Physics Charles University 12116 Praha 2 Czech Republic [3] Institute of Physics ASCR v v i Cukrovarnická 10 162 53 Praha 6 Czech Republic

] Department of Materials Science and Engineering and Department of Physics University of California Berkeley California 94720 USA [2] Materials Science Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA

] Institut de Ciència de Materials de Barcelona ICMAB CSIC Campus UAB Bellaterra E 08193 Spain [2] Max Planck Institute of Microstructure Physics Weinberg 2 Halle D 06120 Germany

] Institute of Physics ASCR v v i Cukrovarnická 10 162 53 Praha 6 Czech Republic [2] School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD UK

Advanced Light Source Lawrence Berkeley National Laboratory Berkeley California 94720 USA

Department of Electrical Engineering and Computer Sciences University of California Berkeley Berkeley California 94720 USA

Department of Materials Science and Engineering and Department of Physics University of California Berkeley California 94720 USA

Institut de Ciència de Materials de Barcelona ICMAB CSIC Campus UAB Bellaterra E 08193 Spain

Institute of Physics ASCR v v i Cukrovarnická 10 162 53 Praha 6 Czech Republic

Institute of Physics ASCR v v i Na Slovance 2 182 21 Praha 8 Czech Republic

Materials Science Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA

National Center for Electron Microscopy Lawrence Berkeley National Laboratory Berkeley California 94720 USA

Zobrazit více v PubMed

Phys Rev Lett. 2012 Jan 6;108(1):017201 PubMed

Phys Rev Lett. 2004 Sep 10;93(11):117203 PubMed

Nat Mater. 2011 May;10(5):344-5 PubMed

Phys Rev Lett. 2008 Feb 29;100(8):087204 PubMed

Phys Rev Lett. 2007 Nov 30;99(22):226602 PubMed

Science. 2012 Jan 13;335(6065):196-9 PubMed

Nature. 2011 Aug 11;476(7359):189-93 PubMed

Phys Rev B Condens Matter. 1996 Sep 15;54(12):8479-8486 PubMed

Science. 2012 May 4;336(6081):555-8 PubMed

Phys Rev Lett. 2007 Aug 3;99(5):056601 PubMed

Phys Rev Lett. 2012 Sep 28;109(13):137201 PubMed

Nat Mater. 2011 May;10(5):347-51 PubMed

Phys Rev Lett. 2007 Oct 5;99(14):147207 PubMed

Nat Mater. 2007 Nov;6(11):813-23 PubMed

Nature. 2004 Jun 24;429(6994):850-3 PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Low-Temperature Electron Spin Resonance Study of MnPS3 Antiferromagnetic Single Crystal

. 2024 Nov 14 ; 128 (45) : 19306-19312. [epub] 20241025

Anisotropic magnetoresistance: materials, models and applications

. 2023 Oct ; 10 (10) : 230564. [epub] 20231018

Preserving Metamagnetism in Self-Assembled FeRh Nanomagnets

. 2023 Feb 15 ; 15 (6) : 8653-8665. [epub] 20230131

Electrically induced and detected Néel vector reversal in a collinear antiferromagnet

. 2018 Nov 08 ; 9 (1) : 4686. [epub] 20181108

Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance

. 2018 Jan 24 ; 9 (1) : 348. [epub] 20180124

Hidden Magnetic States Emergent Under Electric Field, In A Room Temperature Composite Magnetoelectric Multiferroic

. 2017 Nov 13 ; 7 (1) : 15460. [epub] 20171113

Interface-Induced Phenomena in Magnetism

. 2017 Apr-Jun ; 89 (2) : . [epub] 20170605

Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn

. 2016 Oct 20 ; 6 () : 35471. [epub] 20161020

Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes

. 2016 Oct 11 ; 7 () : 13113. [epub] 20161011

Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe

. 2016 Jun 09 ; 7 () : 11623. [epub] 20160609

Antiferromagnetic spintronics

. 2016 Mar ; 11 (3) : 231-41.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...