Room-temperature antiferromagnetic memory resistor
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
24464243
DOI
10.1038/nmat3861
PII: nmat3861
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The bistability of ordered spin states in ferromagnets provides the basis for magnetic memory functionality. The latest generation of magnetic random access memories rely on an efficient approach in which magnetic fields are replaced by electrical means for writing and reading the information in ferromagnets. This concept may eventually reduce the sensitivity of ferromagnets to magnetic field perturbations to being a weakness for data retention and the ferromagnetic stray fields to an obstacle for high-density memory integration. Here we report a room-temperature bistable antiferromagnetic (AFM) memory that produces negligible stray fields and is insensitive to strong magnetic fields. We use a resistor made of a FeRh AFM, which orders ferromagnetically roughly 100 K above room temperature, and therefore allows us to set different collective directions for the Fe moments by applied magnetic field. On cooling to room temperature, AFM order sets in with the direction of the AFM moments predetermined by the field and moment direction in the high-temperature ferromagnetic state. For electrical reading, we use an AFM analogue of the anisotropic magnetoresistance. Our microscopic theory modelling confirms that this archetypical spintronic effect, discovered more than 150 years ago in ferromagnets, is also present in AFMs. Our work demonstrates the feasibility of fabricating room-temperature spintronic memories with AFMs, which in turn expands the base of available magnetic materials for devices with properties that cannot be achieved with ferromagnets.
Advanced Light Source Lawrence Berkeley National Laboratory Berkeley California 94720 USA
Institut de Ciència de Materials de Barcelona ICMAB CSIC Campus UAB Bellaterra E 08193 Spain
Institute of Physics ASCR v v i Cukrovarnická 10 162 53 Praha 6 Czech Republic
Institute of Physics ASCR v v i Na Slovance 2 182 21 Praha 8 Czech Republic
Materials Science Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA
Zobrazit více v PubMed
Phys Rev Lett. 2012 Jan 6;108(1):017201 PubMed
Phys Rev Lett. 2004 Sep 10;93(11):117203 PubMed
Nat Mater. 2011 May;10(5):344-5 PubMed
Phys Rev Lett. 2008 Feb 29;100(8):087204 PubMed
Phys Rev Lett. 2007 Nov 30;99(22):226602 PubMed
Science. 2012 Jan 13;335(6065):196-9 PubMed
Nature. 2011 Aug 11;476(7359):189-93 PubMed
Phys Rev B Condens Matter. 1996 Sep 15;54(12):8479-8486 PubMed
Science. 2012 May 4;336(6081):555-8 PubMed
Phys Rev Lett. 2007 Aug 3;99(5):056601 PubMed
Phys Rev Lett. 2012 Sep 28;109(13):137201 PubMed
Nat Mater. 2011 May;10(5):347-51 PubMed
Phys Rev Lett. 2007 Oct 5;99(14):147207 PubMed
Nat Mater. 2007 Nov;6(11):813-23 PubMed
Nature. 2004 Jun 24;429(6994):850-3 PubMed
Low-Temperature Electron Spin Resonance Study of MnPS3 Antiferromagnetic Single Crystal
Anisotropic magnetoresistance: materials, models and applications
Preserving Metamagnetism in Self-Assembled FeRh Nanomagnets
Electrically induced and detected Néel vector reversal in a collinear antiferromagnet
Interface-Induced Phenomena in Magnetism
Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn
Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe