Hidden Magnetic States Emergent Under Electric Field, In A Room Temperature Composite Magnetoelectric Multiferroic
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem
PubMed
29133957
PubMed Central
PMC5684172
DOI
10.1038/s41598-017-13760-y
PII: 10.1038/s41598-017-13760-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
The ability to control a magnetic phase with an electric field is of great current interest for a variety of low power electronics in which the magnetic state is used either for information storage or logic operations. Over the past several years, there has been a considerable amount of research on pathways to control the direction of magnetization with an electric field. More recently, an alternative pathway involving the change of the magnetic state (ferromagnet to antiferromagnet) has been proposed. In this paper, we demonstrate electric field control of the Anomalous Hall Transport in a metamagnetic FeRh thin film, accompanying an antiferromagnet (AFM) to ferromagnet (FM) phase transition. This approach provides us with a pathway to "hide" or "reveal" a given ferromagnetic region at zero magnetic field. By converting the AFM phase into the FM phase, the stray field, and hence sensitivity to external fields, is decreased or eliminated. Using detailed structural analyses of FeRh films of varying crystalline quality and chemical order, we relate the direct nanoscale origins of this memory effect to site disorder as well as variations of the net magnetic anisotropy of FM nuclei. Our work opens pathways toward a new generation of antiferromagnetic - ferromagnetic interactions for spintronics.
ALBA Synchrotron Light Facility Carrer de la Llum 2 26 Cerdanyola del Vallès Barcelona 08290 Spain
Departament de Física Universitat Autònoma de Barcelona E 08193 Bellaterra Spain
Department of Materials Science and Engineering Cornell University Ithaca New York 14850 USA
Department of Materials Science and Engineering University of Michigan Ann Arbor Michigan 48109 USA
Department of Physics California State University Northridge California 91330 8268 USA
Department of Physics University of California Berkeley California 94720 USA
Institució Catalana de Recerca i Estudis Avançats Passeig Lluís Companys 23 E 08010 Barcelona Spain
Institut de Ciència de Materials de Barcelona Campus UAB Bellaterra 08193 Barcelona Spain
Institute of Physics ASCR v v i Cukrovarnicka 10 162 53 Praha 6 Czech Republic
Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA
Max Planck Institute of Microstructure Physics Weinberg 2 D 06120 Halle Germany
Oak Ridge National Laboratory Center for Nanophase Materials Sciences Oak Ridge Tennessee 37831 USA
Zobrazit více v PubMed
Evans, R. F. L., Yanes, R., Mryasov, O., Chantrell, R. W. & Chubykalo-Fesenko, O. On beating the superparamagnetic limit with exchange bias. EPL 88, 57004
Zsoldos L. Lattice Parameter Change of FeRh Alloys due to Antiferromagnetic‐Ferromagnetic Transformation. phys. stat. sol. (b) 1967;20:K25–K28. doi: 10.1002/pssb.19670200148. DOI
Suzuki I, Naito T, Itoh M, Sato T, Taniyama T. Clear correspondence between magnetoresistance and magnetization of epitaxially grown ordered FeRh thin films. J. Appl. Phys. 2011;109:07C717. doi: 10.1063/1.3556754. DOI
Maat S, Thiele JU, Fullerton E. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B. 2005;72:214432. doi: 10.1103/PhysRevB.72.214432. DOI
de Vries MA, et al. Hall-effect characterization of the metamagnetic transition in FeRh. New J. Phys. 2013;15:013008. doi: 10.1088/1367-2630/15/1/013008. DOI
Cherifi RO, et al. Electric-field control of magnetic order above room temperature. Nature Materials. 2014;13:345–351. doi: 10.1038/nmat3870. PubMed DOI
Lee Y, et al. Large resistivity modulation in mixed-phase metallic systems. Nature Communications. 2015;6:5959. doi: 10.1038/ncomms6959. PubMed DOI
Liu ZQ, et al. Full Electroresistance Modulation in a Mixed-Phase Metallic Alloy. Phys. Rev. Lett. 2016;116:097203. doi: 10.1103/PhysRevLett.116.097203. PubMed DOI
Ignasi, F. et al. Electric-Field-Adjustable Time-Dependent Magnetoelectric Response in Martensitic FeRh Alloy. ACS Applied Materials & Interfaces9(18), 15577–15582 (2017). PubMed
Phillips LC, et al. Local electrical control of magnetic order and orientation by ferroelastic domain arrangements just above room temperature. Sci. Rep. 2015;5:10026. doi: 10.1038/srep10026. PubMed DOI PMC
Nagaosa N, Sinova J, Onoda S, MacDonald AH, Ong NP. Anomalous hall effect. Reviews of modern physics. 2010;82:1539. doi: 10.1103/RevModPhys.82.1539. DOI
MacDonald AH, Tsoi M. Antiferromagnetic metal spintronics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2011;369:3098–3114. doi: 10.1098/rsta.2011.0014. PubMed DOI
Bordel C, et al. Fe Spin Reorientation across the Metamagnetic Transition in Strained FeRh Thin Films. Phys. Rev. Lett. 2012;109:117201. doi: 10.1103/PhysRevLett.109.117201. PubMed DOI
Martí X, et al. Room-temperature antiferromagnetic memory resistor. Nature Materials. 2014;13:367–374. doi: 10.1038/nmat3861. PubMed DOI
Baldasseroni C, et al. Temperature-driven growth of antiferromagnetic domains in thin-film FeRh. J. Phys.: Condens. Matter. 2015;27:256001. PubMed
Chatterjee, S., Giri, S., Majumdar, S. & De, S. K. Metastability and magnetic memory effect in Ni 2 Mn 1.4 Sn 0.6. Phys. Rev. B (2008).
Ryzhkovskii VM, Dymont VP, Erofeenko ZL. Ferromagnetic-antiferromagnetic phase transition in Mn2Sb(Sn) solid solutions. Phys. Stat. Sol. (a) 1992;130:163–168. doi: 10.1002/pssa.2211300119. DOI
Wijngaard JH, Haas C, de Groot RA. Ferrimagnetic-antiferromagnetic phase transition in Mn2−xCrxSb: Electronic structure and electrical and magnetic properties. Phys. Rev. B. 1992;45:5395–5405. doi: 10.1103/PhysRevB.45.5395. PubMed DOI
Caron, L., Miao, X. F., Klaasse, J. C. P., Gama, S. & Bruck, E. Tuning the giant inverse magnetocaloric effect in Mn2-xCrxSb compounds. Appl. Phys. Lett. 103 (2013).
Blöchl PE. Projector augmented-wave method. Phys. Rev. B. 1994;50:17953–17979. doi: 10.1103/PhysRevB.50.17953. PubMed DOI
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science. 1996;6:15–50. doi: 10.1016/0927-0256(96)00008-0. DOI
Kresse G, Furthmüller J. Efficient iterative schemes for ab initiototal-energy calculations using a plane-wave basis set. Phys. Rev. B. 1996;54:11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Perdew JP, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996;77:3865–3868. doi: 10.1103/PhysRevLett.77.3865. PubMed DOI
Koelling DD, Harmon BN. Technique for Relativistic Spin-Polarized Calculations. Journal of Physics C: Solid State Physics. 1977;10:3107–3114. doi: 10.1088/0022-3719/10/16/019. DOI