Preserving Metamagnetism in Self-Assembled FeRh Nanomagnets
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36720004
PubMed Central
PMC10016751
DOI
10.1021/acsami.2c20107
Knihovny.cz E-zdroje
- Klíčová slova
- FeRh, antiferromagnetism, metamagnetism, self-assembly, solid-state dewetting, supercooling,
- Publikační typ
- časopisecké články MeSH
Preparing and exploiting phase-change materials in the nanoscale form is an ongoing challenge for advanced material research. A common lasting obstacle is preserving the desired functionality present in the bulk form. Here, we present self-assembly routes of metamagnetic FeRh nanoislands with tunable sizes and shapes. While the phase transition between antiferromagnetic and ferromagnetic orders is largely suppressed in nanoislands formed on oxide substrates via thermodynamic nucleation, we find that nanomagnet arrays formed through solid-state dewetting keep their metamagnetic character. This behavior is strongly dependent on the resulting crystal faceting of the nanoislands, which is characteristic of each assembly route. Comparing the calculated surface energies for each magnetic phase of the nanoislands reveals that metamagnetism can be suppressed or allowed by specific geometrical configurations of the facets. Furthermore, we find that spatial confinement leads to very pronounced supercooling and the absence of phase separation in the nanoislands. Finally, the supported nanomagnets are chemically etched away from the substrates to inspect the phase transition properties of self-standing nanoparticles. We demonstrate that solid-state dewetting is a feasible and scalable way to obtain supported and free-standing FeRh nanomagnets with preserved metamagnetism.
Zobrazit více v PubMed
Naito M.; Yokoyama T.; Hosokawa K.; Nogi K.. Nanoparticle Technology Handbook, (3rd ed.); Elsevier Science, 2018.
Ward M. D.; Raithby P. R. Functional Behaviour from Controlled Self-Assembly: Challenges and Prospects. Chem. Soc. Rev. 2013, 42, 1619–1636. 10.1039/c2cs35123d. PubMed DOI
Orilall M. C.; Wiesner U. Block Copolymer based Composition and Morphology Control in Nanostructured Hybrid Materials for Energy Conversion and Storage: Solar Cells, Batteries, and Fuel Cells. Chem. Soc. Rev. 2011, 40, 520–535. 10.1039/c0cs00034e. PubMed DOI
Makiura R.; Motoyama S.; Umemura Y.; Yamanaka H.; Sakata O.; Kitagawa H. Surface Nano-Architecture of a Metal–Organic Framework. Nat. Mater. 2010, 9, 565–571. 10.1038/nmat2769. PubMed DOI
Das Gupta T.; Martin-Monier L.; Yan W.; Le Bris A.; Nguyen-Dang T.; Page A. G.; Ho K.-T.; Yesilköy F.; Altug H.; Qu Y.; Sorin F. Self-Assembly of Nanostructured Glass Metasurfaces via Templated Fluid Instabilities. Nat. Nanotechnol. 2019, 14, 320–327. 10.1038/s41565-019-0362-9. PubMed DOI
Hao R.; Xing R.; Xu Z.; Hou Y.; Gao S.; Sun S. Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Adv. Mater. 2010, 22, 2729–2742. 10.1002/adma.201000260. PubMed DOI
Terris B. D.; Thomson T. Nanofabricated and Self-Assembled Magnetic Structures as Data Storage Media. J. Phys. D: Appl. Phys. 2005, 38, R199–R222. 10.1088/0022-3727/38/12/r01. DOI
Hellwig O.; Heyderman L. J.; Petracic O.; Zabel H.. Competing Interactions in Patterned and Self-Assembled Magnetic Nanostructures. In Magnetic Nanostructures; Zabel H., Farle M., Eds.; Springer Tracts in Modern Physics; SpringerHeidelberg: Berlin, 2013; Vol. 246, pp 189–234.
Suh J. Y.; Lopez R.; Feldman L. C.; Haglund R. F. Jr. Semiconductor to Metal Phase Transition in the Nucleation and Growth of VO2 Nanoparticles and Thin Films. J. Appl. Phys. 2004, 96, 1209–1213. 10.1063/1.1762995. DOI
Brassard D.; Fourmaux S.; Jean-Jacques M.; Kieffer J. C.; El Khakani M. A. Grain Size Effect on the Semiconductor-Metal Phase Transition Characteristics of Magnetron-Sputtered VO2 Thin Films. Appl. Phys. Lett. 2005, 87, 051910.10.1063/1.2001139. DOI
Xu G.; Jin P.; Tazawa M.; Yoshimura K. Thickness Dependence of Optical Properties of VO2 Thin Films Epitaxially Grown on Sapphire (0 0 0 1). Appl. Surf. Sci. 2005, 244, 449–452. 10.1016/j.apsusc.2004.09.157. DOI
Peter A. P.; Martens K.; Rampelberg G.; Toeller M.; Ablett J. M.; Meersschaut J.; Cuypers D.; Franquet A.; Detavernier C.; Rueff J.-P.; Schaekers M.; Van Elshocht S.; Jurczak M.; Adelmann C.; Radu I. P. Metal-Insulator Transition in ALD VO2 Ultrathin Films and Nanoparticles: Morphological Control. Adv. Funct. Mater. 2015, 25, 679–686. 10.1002/adfm.201402687. DOI
Lommel J. M. Magnetic and Electrical Properties of FeRh Thin Films. J. Appl. Phys. 1966, 37, 1483–1484. 10.1063/1.1708527. DOI
Ranzieri P.; Fabbrici S.; Nasi L.; Righi L.; Casoli F.; Chernenko V. A.; Villa E.; Albertini F. Epitaxial Ni–Mn–Ga/MgO (1 0 0) Thin Films Ranging in Thickness from 10 to 100 nm. Acta Mater. 2013, 61, 263–272. 10.1016/j.actamat.2012.09.056. DOI
Fallot M.; Hocart R. Sur l’Apparition du Ferromagnétisme par Élévation de Température dans des Alliages de Fer et de Rhodium. Rev. Sci. 1939, 77, 498.
Maat S.; Thiele J.-U.; Fullerton E. E. Temperature and Field Hysteresis of the Antiferromagnetic-to-Ferromagnetic Phase Transition in Epitaxial FeRh Films. Phys. Rev. B: Condens. Matter Mater. Phys. 2005, 72, 214432.10.1103/physrevb.72.214432. DOI
Arregi J. A.; Caha O.; Uhlíř V. Evolution of Strain Across the Magnetostructural Phase Transition in Epitaxial FeRh Films on Different Substrates. Phys. Rev. B 2020, 101, 174413.10.1103/physrevb.101.174413. DOI
Kouvel J. S.; Hartelius C. C. Anomalous Magnetic Moments and Transformations in the Ordered Alloy FeRh. J. Appl. Phys. 1962, 33, 1343–1344. 10.1063/1.1728721. DOI
Lewis L. H.; Marrows C. H.; Langridge S. Coupled Magnetic, Structural, and Electronic Phase Transitions in FeRh. J. Phys. D: Appl. Phys. 2016, 49, 323002.10.1088/0022-3727/49/32/323002. DOI
Thiele J.-U.; Maat S.; Fullerton E. E. FeRh/FePt Exchange Spring Films for Thermally Assisted Magnetic Recording Media. Appl. Phys. Lett. 2003, 82, 2859.10.1063/1.1571232. DOI
Marti X.; Fina I.; Frontera C.; Liu J.; Wadley P.; He Q.; Paull R. J.; Clarkson J. D.; Kudrnovský J.; Turek I.; Kuneš J.; Yi D.; Chu J.-H.; Nelson C. T.; You L.; Arenholz E.; Salahuddin S.; Fontcuberta J.; Jungwirth T.; Ramesh R. Room-Temperature Antiferromagnetic Memory Resistor. Nat. Mater. 2014, 13, 367–374. 10.1038/nmat3861. PubMed DOI
Moriyama T.; Matsuzaki N.; Kim J. K.; Suzuki I.; Taniyama T.; Ono T. Sequential Write-read Operations in FeRh Antiferromagnetic Memory. Appl. Phys. Lett. 2015, 107, 122403.10.1063/1.4931567. DOI
Pecharsky V. K.; Gschneidner K. A. Jr. Magnetocaloric Effect and Magnetic Refrigeration. J. Magn. Magn. Mater. 1999, 200, 44–56. 10.1016/s0304-8853(99)00397-2. DOI
Lyubina J. Magnetocaloric Materials for Energy Efficient Cooling. J. Phys. D: Appl. Phys. 2017, 50, 053002.10.1088/1361-6463/50/5/053002. DOI
Belo J. H.; Pires A. L.; Araújo J. P.; Pereira A. M. Magnetocaloric Materials: From Micro-to Nanoscale. J. Mater. Res. 2019, 34, 134–157. 10.1557/jmr.2018.352. DOI
Barbic M.; Dodd S. J.; Morris H. D.; Dilley N.; Marcheschi B.; Huston A.; Harris T. D.; Koretsky A. P. Magnetocaloric Materials as Switchable High Contrast Ratio MRI Labels. Magn. Reson. Med. 2019, 81, 2238–2246. 10.1002/mrm.27615. PubMed DOI PMC
Barbic M.; Dodd S. J.; ElBidweihy H.; Dilley N. R.; Marcheschi B.; Huston A. L.; Morris H. D.; Koretsky A. P. Multifield and Inverse-Contrast Switching of Magnetocaloric High Contrast Ratio MRI Labels. Magn. Reson. Med. 2021, 85, 506–517. 10.1002/mrm.28400. PubMed DOI PMC
Ko H. Y. Y.; Suzuki T.; Phuoc N. N.; Cao J. Fabrication and Characterization of FeRh Nanoparticles. J. Appl. Phys. 2008, 103, 07D508.10.1063/1.2832440. DOI
Jia Z.; Harrell J. W.; Misra R. D. K. Synthesis and Magnetic Properties of Self-Assembled FeRh Nanoparticles. Appl. Phys. Lett. 2008, 93, 022504.10.1063/1.2952956. DOI
Cao Y.; Yuan Y.; Shang Y.; Zverev V. I.; Gimaev R. R.; Barua R.; Hadimani R. L.; Mei L.; Guo G.; Fu H. Phase Transition and Magnetocaloric Effect in Particulate Fe-Rh Alloys. J. Mater. Sci. 2020, 55, 13363–13371. 10.1007/s10853-020-04921-y. DOI
Biswas A.; Gupta S.; Clifford D.; Mudryk Y.; Hadimani R.; Barua R.; Pecharsky V. K. Bulk-like First-Order Magnetoelastic Transition in FeRh Particles. J. Alloys Compd. 2022, 921, 165993.10.1016/j.jallcom.2022.165993. DOI
Ayoub J. P.; Gatel C.; Roucau C.; Casanove M. J. Structure and Chemical Order in FeRh Nanolayers Epitaxially Grown on MgO (0 0 1). J. Cryst. Growth 2011, 314, 336–340. 10.1016/j.jcrysgro.2010.11.127. DOI
Loving M.; Jimenez-Villacorta F.; Kaeswurm B.; Arena D. A.; Marrows C. H.; Lewis L. H. Structural Evidence for Stabilized Ferromagnetism in Epitaxial FeRh Nanoislands. J. Phys. D: Appl. Phys. 2013, 46, 162002.10.1088/0022-3727/46/16/162002. DOI
Liu M.; Benzo P.; Tang H.; Castiella M.; Warot-Fonrose B.; Tarrat N.; Gatel C.; Respaud M.; Morillo J.; Casanove M. J. Magnetism and Morphology in Faceted B2-Ordered FeRh Nanoparticles. Europhys. Lett. 2016, 116, 27006.10.1209/0295-5075/116/27006. DOI
Keavney D. J.; Choi Y.; Holt M. V.; Uhlíř V.; Arena D.; Fullerton E. E.; Ryan P. J.; Kim J.-W. Phase Coexistence and Kinetic Arrest in the Magnetostructural Transition of the Ordered Alloy FeRh. Sci. Rep. 2018, 8, 1778.10.1038/s41598-018-20101-0. PubMed DOI PMC
Fan R.; Kinane C. J.; Charlton T. R.; Dorner R.; Ali M.; de Vries M. A.; Brydson R. M. D.; Marrows C. H.; Hickey B. J.; Arena D. A.; Tanner B. K.; Nisbet G.; Langridge S. Ferromagnetism at the Interfaces of Antiferromagnetic FeRh epilayers. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82, 184418.10.1103/physrevb.82.184418. DOI
Pressacco F.; Uhlíř V.; Gatti M.; Bendounan A.; Fullerton E. E.; Sirotti F. Stable Room-Temperature Ferromagnetic Phase at the FeRh (100) surface. Sci. Rep. 2016, 6, 22383.10.1038/srep22383. PubMed DOI PMC
Thompson C. V. Solid-State Dewetting of Thin Films. Annu. Rev. Mater. Res. 2012, 42, 399–434. 10.1146/annurev-matsci-070511-155048. DOI
Leroy F.; Borowik Ł.; Cheynis F.; Almadori Y.; Curiotto S.; Trautmann M.; Barbé J. C.; Müller P. How to Control Solid State Dewetting: A Short Review. Surf. Sci. Rep. 2016, 71, 391–409. 10.1016/j.surfrep.2016.03.002. DOI
Westwood A. R. C.; Goldheim D. L. Cleavage Surface Energy of {100} Magnesium Oxide. J. Appl. Phys. 1963, 34, 3335–3339. 10.1063/1.1729189. DOI
Ye J.; Thompson C. V. Mechanisms of Complex Morphological Evolution During Solid-State Dewetting of Single-Crystal Nickel Thin Films. Appl. Phys. Lett. 2010, 97, 071904.10.1063/1.3480419. DOI
Ye J.; Thompson C. V. Anisotropic Edge Retraction and Hole Growth During Solid-State Dewetting of Single Crystal Nickel Thin Films. Acta Mater. 2011, 59, 582–589. 10.1016/j.actamat.2010.09.062. DOI
Srolovitz D. J.; Safran S. A. Capillary Instabilities in Thin Films. I. Energetics. J. Appl. Phys. 19861986, 60, 247–254. 10.1063/1.337689. DOI
Cook R. F. Crack Propagation Thresholds: A Measure of Surface Energy. J. Mater. Res. 1986, 1, 852–860. 10.1557/jmr.1986.0852. DOI
Goniakowski J.; Noguera C. Atomic and Electronic Structure of Steps and Kinks on MgO (100) and MgO (110). Surf. Sci. 1995, 340, 191–204. 10.1016/0039-6028(95)00657-5. DOI
Watson G. W.; Kelsey E. T.; de Leeuw N. H.; Harris D. J.; Parker S. C. Atomistic Simulation of Dislocations, Surfaces and Interfaces in MgO. J. Chem. Soc., Faraday Trans. 1996, 92, 433–438. 10.1039/ft9969200433. DOI
Fullerton E. E.; Conover M. J.; Mattson J. E.; Sowers C. H.; Bader S. D. Oscillatory Interlayer Coupling and Giant Magnetoresistance in Epitaxial Fe/Cr (211) and (100) Superlattices. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 48, 15755–15763. 10.1103/physrevb.48.15755. PubMed DOI
Ohtake M.; Kirino F.; Futamoto M. Structure and Magnetic Properties of Fe/X (X= Au, Ag, Cu) Epitaxial Multilayer Films Grown on MgO (011) Substrates. Jpn. J. Appl. Phys. 2007, 46, L895–L897. 10.1143/jjap.46.l895. DOI
Goy C.; Potenza M. A. C.; Dedera S.; Tomut M.; Guillerm E.; Kalinin A.; Voss K.-O.; Schottelius A.; Petridis N.; Prosvetov A.; Tejeda G.; Fernández J. M.; Trautmann C.; Caupin F.; Glasmacher U.; Grisenti R. E. Shrinking of Rapidly Evaporating Water Microdroplets Reveals their Extreme Supercooling. Phys. Rev. Lett. 2018, 120, 015501.10.1103/PhysRevLett.120.015501. PubMed DOI
Uhlíř V.; Arregi J. A.; Fullerton E. E. Colossal Magnetic Phase Transition Asymmetry in Mesoscale FeRh Stripes. Nat. Commun. 2016, 7, 13113.10.1038/ncomms13113. PubMed DOI PMC
Arregi J. A.; Horký M.; Fabianová K.; Tolley R.; Fullerton E. E.; Uhlíř V. Magnetization Reversal and Confinement Effects Across the Metamagnetic Phase Transition in Mesoscale FeRh structures. J. Phys. D: Appl. Phys. 2018, 51, 105001.10.1088/1361-6463/aaaa5a. DOI
Hillion A.; Cavallin A.; Vlaic S.; Tamion A.; Tournus F.; Khadra G.; Dreiser J.; Piamonteze C.; Nolting F.; Rusponi S.; Sato K.; Konno T. J.; Proux O.; Dupuis V.; Brune H. Low Temperature Ferromagnetism in Chemically Ordered FeRh Nanocrystals. Phys. Rev. Lett. 2013, 110, 087207.10.1103/PhysRevLett.110.087207. PubMed DOI
Herrera G.; Robert A.; Dupuis V.; Blanchard N.; Boisron O.; Albin C.; Bardotti L.; Le Roy D.; Tournus F.; Tamion A. Chemical and Magnetic Order in Mass-Selected Large FeRh Nanomagnets Embedded in a Carbon Matrix. Eur. Phys. J.: Appl. Phys. 2022, 97, 32.10.1051/epjap/2022210290. DOI
Lommel J. M. Role of Oxygen in Obtaining Complete Magnetic First-Order Transitions in FeRh Films. J. Appl. Phys. 1969, 40, 1466–1467. 10.1063/1.1657723. DOI
Ohtani Y.; Hatakeyama I. Features of Broad Magnetic Transition in FeRh Thin Film. J. Magn. Magn. Mater. 1994, 131, 339–344. 10.1016/0304-8853(94)90278-x. DOI
Suzuki I.; Koike T.; Itoh M.; Taniyama T.; Sato T. Stability of Ferromagnetic State of Epitaxially Grown Ordered FeRh Thin Films. J. Appl. Phys. 2009, 105, 07E501.10.1063/1.3054386. DOI
Han G. C.; Qiu J. J.; Yap Q. J.; Luo P.; Kanbe T.; Shige T.; Laughlin D. E.; Zhu J.-G. Suppression of Low-Temperature Ferromagnetic Phase in Ultrathin FeRh films. J. Appl. Phys. 2013, 113, 123909.10.1063/1.4798275. DOI
Barton C. W.; Ostler T. A.; Huskisson D.; Kinane C. J.; Haigh S. J.; Hrkac G.; Thomson T. Substrate Induced Strain Field in FeRh Epilayers Grown on Single Crystal MgO (001) Substrates. Sci. Rep. 2017, 7, 44397.10.1038/srep44397. PubMed DOI PMC
Benito L.; Clark L.; Almeida T. P.; Moore T. A.; McGrouther D.; McVitie S.; Marrows C. H. Sputter-Engineering a First-Order Magnetic Phase Transition in Sub-15-nm-Thick Single-Crystal FeRh Films. Phys. Rev. Mater. 2020, 4, 123402.10.1103/physrevmaterials.4.123402. DOI
Müller P.; Kern R. Equilibrium Nano-Shape Changes Induced by Epitaxial Stress (Generalised Wulf–Kaishew Theorem). Surf. Sci. 2000, 457, 229–253. 10.1016/S0039-6028(00)00371-X. DOI
Fruchart O.; Jubert P. O.; Eleoui M.; Cheynis F.; Borca B.; David P.; Santonacci V.; Liénard A.; Hasegawa M.; Meyer C. Growth Modes of Fe (110) Revisited: a Contribution of Self-Assembly to Magnetic Materials. J. Phys.: Condens. Matter 2007, 19, 053001.10.1088/0953-8984/19/5/053001. DOI
Ye J.; Thompson C. V. Templated Solid-State Dewetting to Controllably Produce Complex Patterns. Adv. Mater. 2011, 23, 1567–1571. 10.1002/adma.201004095. PubMed DOI
Kadiri V. M.; Bussi C.; Holle A. W.; Son K.; Kwon H.; Schütz G.; Gutierrez M. G.; Fischer P. Biocompatible Magnetic Micro-and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection. Adv. Mater. 2020, 32, 2001114.10.1002/adma.202001114. PubMed DOI
Průša S.; Bábík P.; Mach J.; Strapko T.; Šikola T.; Brongersma H. H. Calcium and Fluorine Signals in HS-LEIS for CaF2(111) and Powder–Quantification of Atomic Surface Concentrations using LiF(001), Ca, and Cu References. Surf. Sci. Spectra 2020, 27, 024201.10.1116/6.0000325. DOI
Uhlíř V.; Pressacco F.; Arregi J. A.; Procházka P.; Průša S.; Potoček M.; Šikola T.; Čechal J.; Bendounan A.; Sirotti F. Single-Layer Graphene on Epitaxial FeRh Thin Films. Appl. Surf. Sci. 2020, 514, 145923.10.1016/j.apsusc.2020.145923. DOI
Brongersma H. H.; Draxler M.; Deridder M.; Bauer P. Surface Composition Analysis by Low-Energy Ion Scattering. Surf. Sci. Rep. 2007, 62, 63–109. 10.1016/j.surfrep.2006.12.002. DOI
Nečas D.; Klapetek P. Gwyddion: an Open-Source Software for SPM Data Analysis. Cent. Eur. J. Phys. 2012, 10, 181–188. 10.2478/s11534-011-0096-2. DOI
Rahm J. M.; Erhart P. WulffPack: A Python package for Wulff constructions. J. Open Source Softw. 2020, 5, 1944.10.21105/joss.01944. DOI
Edler T.; Mayr S. G. Film Lift–Off from MgO: Freestanding Single Crystalline Fe–Pd Films Suitable for Magnetic Shape Memory Actuation–and Beyond. Adv. Mater. 2010, 22, 4969–4972. 10.1002/adma.201002183. PubMed DOI
Barrera G.; Celegato F.; Coïsson M.; Cialone M.; Rizzi P.; Tiberto P. Formation of Free-Standing Magnetic Particles by Solid-State Dewetting of Fe80Pd20 Thin Films. J. Alloys Compd. 2018, 742, 751–758. 10.1016/j.jallcom.2018.01.373. DOI
Field switching of microfabricated metamagnetic FeRh MRI contrast agents
Coexisting Phases of Individual VO2 Nanoparticles for Multilevel Nanoscale Memory