Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
27725642
PubMed Central
PMC5062592
DOI
10.1038/ncomms13113
PII: ncomms13113
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Coupled order parameters in phase-transition materials can be controlled using various driving forces such as temperature, magnetic and electric field, strain, spin-polarized currents and optical pulses. Tuning the material properties to achieve efficient transitions would enable fast and low-power electronic devices. Here we show that the first-order metamagnetic phase transition in FeRh films becomes strongly asymmetric in mesoscale structures. In patterned FeRh stripes we observed pronounced supercooling and an avalanche-like abrupt transition from the ferromagnetic to the antiferromagnetic phase, while the reverse transition remains nearly continuous over a broad temperature range. Although modest asymmetry signatures have been found in FeRh films, the effect is dramatically enhanced at the mesoscale. The activation volume of the antiferromagnetic phase is more than two orders of magnitude larger than typical magnetic heterogeneities observed in films. The collective behaviour upon cooling results from the role of long-range ferromagnetic exchange correlations that become important at the mesoscale and should be a general property of first-order metamagnetic phase transitions.
CEITEC BUT Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
CIC nanoGUNE Tolosa Hiribidea 76 E 20018 Donostia San Sebastián Spain
See more in PubMed
Sarrao J. L. & Crabtree G. W. Opportunities and advances in mesoscale science. Curr. Opin. Solid State Mater. Sci. 19(4), 201–202 (2015).
Dagotto E. Complexity in strongly correlated electronic systems. Science 309, 257–262 (2005). PubMed
Ramesh R. & Spaldin N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007). PubMed
Kainuma R. et al.. Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439, 957–960 (2006). PubMed
Moya X., Kar-Narayan S. & Mathur N. D. Caloric materials near ferroic phase transitions. Nat. Mater. 13, 439–450 (2014). PubMed
Heyderman L. J. & Stamps R. L. Artificial ferroic systems: novel functionality from structure, interactions and dynamics. J. Phys. Condens. Matter 25, 363201 (2013). PubMed
Zheludev N. I. & Kivshar Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012). PubMed
Nie Z., Petukhova A. & Kumacheva E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 5, 15–25 (2010). PubMed
Spaldin N. A., Cheong S.-W. & Ramesh R. Multiferroics: past, present, and future. Phys. Today 63, 38–43 (2010).
Coey J. M. D., Viret M. & von Molnár S. Mixed-valence manganites. Adv. Phys. 48, 167–293 (1999).
Yang Z., Ko C. & Ramanathan S. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41, 337–367 (2011).
Senn M. S., Wright J. P. & Attfield J. P. Charge order and three-site distortions in the Verwey structure of magnetite. Nature 481, 173–176 (2012). PubMed
Fujishiro H., Ikebe M. & Konno Y. Phase transition to antiferromagnetic state in La1-xSrxMnO3 (x≥0.5). J. Phys. Soc. Jpn. 67, 1799–1800 (1998).
Savosta M. M. et al.. Ferromagnetic-antiferromagnetic transition in Pr0.51Sr0.49MnO3 manganite. Phys. Rev. B 65, 224418 (2002).
Roy S. B. et al.. First order magnetic transition in doped CeFe2 alloys: phase coexistence and metastability. Phys. Rev. Lett. 92, 147203 (2004). PubMed
Kanomata T. & Ido H. Magnetic transitions in Mn2-xMxSb (M=3d metals). J. Appl. Phys. 55, 2039–2041 (1984).
Nishihara Y. & Yamaguchi Y. Magnetic phase transitions in itinerant electron magnets Hf1-xTaxFe2. J. Phys. Soc. Jpn. 52, 3630–3636 (1983).
Fallot M. & Hocart R. Sur l'apparition du ferromagnétisme par élévation de température dans des alliages de fer et de rhodium. Rev. Sci. 77, 498–500 (1939).
Kouvel J. S. & Hartelius C. C. Anomalous magnetic moments and transformations in the ordered alloy FeRh. J. Appl. Phys. 33, 1343–1344 (1962).
Shirane G., Nathans R. & Chen C. W. Magnetic moments and unpaired spin densities in the Fe-Rh alloys. Phys. Rev. 134, A1547–A1553 (1964).
Maat S., Thiele J.-U. & Fullerton E. E. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B 72, 214432 (2005).
Bordel C. et al.. Fe spin reorientation across the metamagnetic transition in strained FeRh thin films. Phys. Rev. Lett. 109, 117201 (2012). PubMed
Cherifi R. O. et al.. Electric-field control of magnetic order above room temperature. Nat. Mater. 13, 345–351 (2014). PubMed
Moritomo Y., Kuwahara H., Tomioka Y. & Tokura Y. Pressure effects on charge-ordering transitions in Perovskite manganites. Phys. Rev. B 55, 7549–7556 (1997).
Vinokurova L. I., Vlasov A. V. & Pardavi-Horváth M. Pressure effects on magnetic phase transitions in FeRh and FeRhIr alloys. Phys. Stat. Sol. 78, 353–357 (1976).
Kimura T. et al.. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003). PubMed
Matsukura F., Tokura Y. & Ohno H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015). PubMed
Kouvel J. S. Unusual nature of the abrupt magnetic transition in FeRh and its pseudobinary variants. J. Appl. Phys. 37, 1257–1258 (1966).
Barua R., Jiménez-Villacorta F. & Lewis L. H. Predicting magnetostructural trends in FeRh-based ternary systems. Appl. Phys. Lett. 103, 102407 (2013).
Papon P., Leblond J. & Meijer P. H. E. in The Physics of Phase Transitions 2nd edn. Springer (2006).
Roy S. B. & Chaddah P. First order magneto-structural phase transition in various functional materials. Curr. Sci. 88, 71–77 (2005).
Zhai H.-Y. et al.. Giant discrete steps in metal-insulator transition in perovskite manganite wires. Phys. Rev. Lett. 97, 167201 (2006). PubMed
Wei J. & Natelson D. Nanostructure studies of strongly correlated materials. Nanoscale 3, 3509–3521 (2011). PubMed
Sharoni A., Ramírez J. G. & Schuller I. K. Multiple avalanches across the metal-insulator transition of vanadium oxide nanoscaled junctions. Phys. Rev. Lett. 101, 026404 (2008). PubMed
Singh-Bhalla G., Selcuk S., Dhakal T., Biswas A. & Hebard A. F. Intrinsic tunneling in phase separated manganites. Phys. Rev. Lett. 102, 077205 (2009). PubMed
Ward T. Z. et al.. Reemergent metal-insulator transitions in manganites exposed with spatial confinement. Phys. Rev. Lett. 100, 247204 (2008). PubMed
Zakharov A. I., Kadomtseva A. M., Levitin R. Z. & Ponyatovskii E. G. Magnetic and magnetoelastic properties of the metamagnetic iron-rhodium alloy. Sov. Phys. JETP 19, 1348–1353 (1964).
Annaorazov M. P., Nikitin S. A., Tyurin A. L., Asatryan K. A. & Dovletov A. Kh. Anomalously high entropy change in FeRh alloy. J. Appl. Phys. 79, 1689–1695 (1996).
Marti X. et al.. Room-temperature antiferromagnetic memory resistor. Nat. Mater. 13, 367–374 (2014). PubMed
Thiele J.-U., Maat S. & Fullerton E. E. FeRh/FePt exchange spring films for thermally assisted magnetic recording media. Appl. Phys. Lett. 82, 2859–2861 (2003).
Ju G. et al.. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 93, 197403 (2004). PubMed
Mariager S. O. et al.. Structural and magnetic dynamics of a laser induced phase transition in FeRh. Phys. Rev. Lett. 108, 087201 (2012). PubMed
Fan R. et al.. Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers. Phys. Rev. B 82, 184418 (2010).
Le Graët C. et al.. Temperature controlled motion of an antiferromagnet-ferromagnet interface within a dopant-graded FeRh epilayer. APL Mater. 3, 041802 (2015).
Han G. C. et al.. Magnetic stability of ultrathin FeRh films. J. Appl. Phys. 113, 17C107 (2013).
Manekar M., Mukherjee C. & Roy S. B. Imaging of time evolution of the first-order magneto-structural transition in Fe-Rh alloy using magnetic force microscopy. Europhys. Lett. 80, 17004 (2007).
Baldasseroni C. et al.. Temperature-driven nucleation of ferromagnetic domains in FeRh thin films. Appl. Phys. Lett. 100, 262401 (2012).
Baldasseroni C. et al.. Temperature-driven growth of antiferromagnetic domains in thin-film FeRh. J. Phys.: Condens. Matter 27, 256001 (2015). PubMed
de Vries M. A. et al.. Asymmetric ‘melting' and ‘freezing' kinetics of the magnetostructural phase transition in B2-ordered FeRh epilayers. Appl. Phys. Lett. 104, 232407 (2014).
Loving M. et al.. Structural evidence for stabilized ferromagnetism in epitaxial FeRh nanoislands. J. Phys. D: Appl. Phys. 46, 162002 (2013).
Coey J. M. D. Amorphous magnetic order. J. Appl. Phys. 49, 1646–1652 (1978).
Carey M. J., Smith N., Gurney B. A., Childress J. R. & Lin T. Thermally assisted decay of pinning in polycrystalline exchange biased systems (invited). J. Appl. Phys. 89, 6579–6584 (2001).
Radu F. et al.. Origin of the reduced exchange bias in an epitaxial FeNi(111)/CoO(111) bilayer. Phys. Rev. B 79, 184425 (2009).
Fitzsimmons M. R. et al.. Antiferromagnetic domain size and exchange bias. Phys. Rev. B 77, 224406 (2008).
Suzuki I., Hamasaki Y., Itoh M. & Taniyama T. Controllable exchange bias in Fe/metamagnetic FeRh bilayers. Appl. Phys. Lett. 105, 172401 (2014).
Ding Y. et al.. Bulk and near-surface magnetic properties of FeRh thin films. J. Appl. Phys. 103, 07B515 (2008).
Pressacco F. et al.. Stable room-temperature ferromagnetic phase at the FeRh(100) surface. Sci. Rep. 6, 22383 (2016). PubMed PMC
Bennett S. P. et al.. Giant controllable magnetization changes induced by structural phase transitions in a metamagnetic artificial multiferroic. Sci. Rep. 6, 22708 (2016). PubMed PMC
Baldasseroni C. et al.. Effect of capping material on interfacial ferromagnetism in FeRh thin films. J. Appl. Phys. 115, 043919 (2014).
Sethna J. P. et al.. Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transformations. Phys. Rev. Lett. 70, 3347–3350 (1993). PubMed
Davies J. E. et al.. Magnetization reversal of Co/Pt multilayers: microscopic origin of high-field magnetic irreversibility. Phys. Rev. B 70, 224434 (2004).
Brown W. F. Jr Virtues and weaknesses of the domain concept. Rev. Mod. Phys. 17, 15–19 (1945).
Thomson T., Hu G. & Terris B. D. Intrinsic distribution of magnetic anisotropy in thin films probed by patterned nanostructures. Phys. Rev. Lett. 96, 257204 (2006). PubMed
Birkholz M. Thin Film Analysis by X-Ray Scattering Wiley-VCH Verlag GmbH & Co. KGaA (2005).
de Vries M. A. et al.. Hall effect characterization of the metamagnetic transition in FeRh. New J. Phys. 15, 013008 (2013).
Field switching of microfabricated metamagnetic FeRh MRI contrast agents
Coexisting Phases of Individual VO2 Nanoparticles for Multilevel Nanoscale Memory
Preserving Metamagnetism in Self-Assembled FeRh Nanomagnets
Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics