Coexisting Phases of Individual VO2 Nanoparticles for Multilevel Nanoscale Memory
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39745284
PubMed Central
PMC11752518
DOI
10.1021/acsnano.4c13188
Knihovny.cz E-zdroje
- Klíčová slova
- coexisting phases, hysteresis, insulator−metal transition, nanophotonics, phase-change memory, transmission electron microscopy, vanadium dioxide,
- Publikační typ
- časopisecké články MeSH
Vanadium dioxide (VO2) has received significant interest in the context of nanophotonic metamaterials and memories owing to its reversible insulator-metal transition associated with significant changes in its optical and electronic properties. The phase transition of VO2 has been extensively studied for several decades, and the ways how to control its hysteresis characteristics relevant for memory applications have significantly improved. However, the hysteresis dynamics and stability of coexisting phases during the transition have not been studied on the level of individual single-crystal VO2 nanoparticles (NPs), although they represent the fundamental component of ordinary polycrystalline films and can also act like nanoscale memory units on their own. Here, employing transmission electron microscopy techniques, we investigate phase transitions of single VO2 NPs in real time. Our analysis reveals the statistical distribution of the transition temperature and steepness and how they differ during forward (heating) and backward (cooling) transitions. We evaluate the stability of coexisting phases in individual NPs and prove the persistent multilevel memory at near room temperatures using only a few VO2 NPs. Our findings unveil the physical mechanisms that govern the hysteresis of VO2 at the nanoscale and establish VO2 NPs as a promising component of optoelectronic and memory devices with enhanced functionalities.
Zobrazit více v PubMed
Yang J.; Gurung S.; Bej S.; Ni P.; Lee H. W. H. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys. 2022, 85, 03610110.1088/1361-6633/ac2aaf. PubMed DOI
Lian C.; Vagionas C.; Alexoudi T.; Pleros N.; Youngblood N.; Ríos C. Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics 2022, 11, 3823–3854. 10.1515/nanoph-2022-0089. PubMed DOI PMC
Youngblood N.; Ocampo C. A. R.; Pernice W. H. P.; Bhaskaran H. Integrated optical memristors. Nat. Photonics 2023, 17, 561–572. 10.1038/s41566-023-01217-w. DOI
Wuttig M.; Bhaskaran H.; Taubner T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 2017, 11, 465–476. 10.1038/nphoton.2017.126. DOI
Ríos C.; Stegmaier M.; Hosseini P.; Wang D.; Scherer T.; Wright C. D.; Bhaskaran H.; Pernice W. H. P. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732. 10.1038/nphoton.2015.182. DOI
Abdollahramezani S.; Hemmatyar O.; Taghinejad M.; Taghinejad H.; Krasnok A.; Eftekhar A. A.; Teichrib C.; Deshmukh S.; El-Sayed M. A.; Pop E.; Wuttig M.; Alù A.; Cai W.; Adibi A. Electrically driven reprogrammable phase-change metasurface reaching 80pct efficiency. Nat. Commun. 2022, 13, 169610.1038/s41467-022-29374-6. PubMed DOI PMC
Schofield P.; Bradicich A.; Gurrola R. M.; Zhang Y.; Brown T. D.; Pharr M.; Shamberger P. J.; Banerjee S. Harnessing the Metal–Insulator Transition of VO2 in Neuromorphic Computing. Adv. Mater. 2023, 35, 220529410.1002/adma.202205294. PubMed DOI
Lee Y. J.; Kim Y.; Gim H.; Hong K.; Jang H. W. Nanoelectronics Using Metal–Insulator Transition. Adv. Mater. 2024, 36, 230535310.1002/adma.202305353. PubMed DOI
Gu T.; Kim H. J.; Rivero-Baleine C.; Hu J. Reconfigurable metasurfaces towards commercial success. Nat. Photonics 2023, 17, 48–58. 10.1038/s41566-022-01099-4. DOI
Parra J.; Navarro-Arenas J.; Menghini M.; Recaman M.; Pierre-Locquet J.; Sanchis P. Low-threshold power and tunable integrated optical limiter based on an ultracompact VO2/Si waveguide. APL Photonics 2021, 6, 12130110.1063/5.0071395. DOI
Jung Y.; Han H.; Sharma A.; Jeong J.; Parkin S. S. P.; Poon J. K. S. Integrated Hybrid VO2–Silicon Optical Memory. ACS Photonics 2022, 9, 217–223. 10.1021/acsphotonics.1c01410. DOI
Jung Y.; Jeong J.; Qu Z.; Cui B.; Khanda A.; Parkin S. S. P.; Poon J. K. S. Observation of Optically Addressable Nonvolatile Memory in VO2 at Room Temperature. Adv. Electron. Mater. 2021, 7, 200114210.1002/aelm.202001142. DOI
Lopez R.; Haynes T. E.; Boatner L. A.; Feldman L. C.; Haglund R. F. Size effects in the structural phase transition of VO2 nanoparticles. Phys. Rev. B 2002, 65, 22411310.1103/PhysRevB.65.224113. DOI
Nishikawa K.; Nishida J.; Yoshimura M.; Nakamoto K.; Kumagai T.; Watanabe Y. Metastability in the Insulator–Metal Transition for Individual Vanadium Dioxide Nanoparticles. J. Phys. Chem. C 2023, 127, 16485–16495. 10.1021/acs.jpcc.3c02151. DOI
Cheng S.; Lee M.-H.; Tran R.; Shi Y.; Li X.; Navarro H.; Adda C.; Meng Q.; Chen L.-Q.; Dynes R. C.; Ong S. P.; Schuller I. K.; Zhu Y. Inherent stochasticity during insulator–metal transition in VO2. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, 210589511810.1073/pnas.2105895118. PubMed DOI PMC
Johnson A. S.; Perez-Salinas D.; Siddiqui K. M.; Kim S.; Choi S.; Volckaert K.; Majchrzak P. E.; Ulstrup S.; Agarwal N.; Hallman K.; Haglund R. F.; Günther C. M.; Pfau B.; Eisebitt S.; Backes D.; Maccherozzi F.; Fitzpatrick A.; Dhesi S. S.; Gargiani P.; Valvidares M.; et al. Ultrafast X-ray imaging of the light-induced phase transition in VO2. Nat. Phys. 2022, 19, 215–220. 10.1038/s41567-022-01848-w. DOI
Qazilbash M. M.; Brehm M.; Chae B.-G.; Ho P.-C.; Andreev G. O.; Kim B.-J.; Yun S. J.; Balatsky A. V.; Maple M. B.; Keilmann F.; Kim H.-T.; Basov D. N. Mott Transition in VO2 Revealed by Infrared Spectroscopy and Nano-Imaging. Science 2007, 318, 1750–1753. 10.1126/science.1150124. PubMed DOI
Huber M. A.; Plankl M.; Eisele M.; Marvel R. E.; Sandner F.; Korn T.; Schüller C.; Haglund R. F.; Huber R.; Cocker T. L. Ultrafast Mid-Infrared Nanoscopy of Strained Vanadium Dioxide Nanobeams. Nano Lett. 2016, 16, 1421–1427. 10.1021/acs.nanolett.5b04988. PubMed DOI
Bae S.; Lee S.; Koo H.; Lin L.; Jo B. H.; Park C.; Wang Z. L. The Memristive Properties of a Single VO2 Nanowire with Switching Controlled by Self-Heating. Adv. Mater. 2013, 25, 5098–5103. 10.1002/adma.201302511. PubMed DOI
Andrews J. L.; Santos D. A.; Meyyappan M.; Williams R. S.; Banerjee S. Building Brain-Inspired Logic Circuits from Dynamically Switchable Transition-Metal Oxides. Trends Chem. 2019, 1, 711–726. 10.1016/j.trechm.2019.07.005. DOI
White S. T.; Thompson E. A.; Brown P. F.; Haglund R. F. Substrate Chemistry and Lattice Effects in Vapor Transport Growth of Vanadium Dioxide Microcrystals. Cryst. Growth Des. 2021, 21, 3770–3778. 10.1021/acs.cgd.1c00088. DOI
Wan C.; Zhang Z.; Woolf D.; Hessel C. M.; Rensberg J.; Hensley J. M.; Xiao Y.; Shahsafi A.; Salman J.; Richter S.; Sun Y.; Qazilbash M. M.; Schmidt-Grund R.; Ronning C.; Ramanathan S.; Kats M. A. On the Optical Properties of Thin-Film Vanadium Dioxide from the Visible to the Far Infrared. Ann. Phys. 2019, 531, 190018810.1002/andp.201900188. DOI
Donev E. U.; Lopez R.; Feldman L. C.; Haglund R. F. Confocal Raman Microscopy Across The Metal-Insulator Transition of Single Vanadium Dioxide Nanoparticles. Nano Lett. 2009, 9, 702–706. 10.1021/nl8031839. PubMed DOI
Appavoo K.; Lei D. Y.; Sonnefraud Y.; Wang B.; Pantelides S. T.; Maier S. A.; Haglund R. F. Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy. Nano Lett. 2012, 12, 780–786. 10.1021/nl203782y. PubMed DOI
Clarke H.; Carraway B. D.; Sellers D. G.; Braham E. J.; Banerjee S.; Arróyave R.; Shamberger P. J. Nucleation-controlled hysteresis in unstrained hydrothermal VO2 particles. Phys. Rev. Mater. 2018, 2, 10340210.1103/PhysRevMaterials.2.103402. DOI
Lei D. Y.; Appavoo K.; Ligmajer F.; Sonnefraud Y.; Haglund R. F.; Maier S. A. Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure. ACS Photonics 2015, 2, 1306–1313. 10.1021/acsphotonics.5b00249. DOI
Zhi B.; Gao G.; Xu H.; Chen F.; Tan X.; Chen P.; Wang L.; Wu W. Electric-Field-Modulated Nonvolatile Resistance Switching in VO2/PMN-Pt(111) Heterostructures. ACS Appl. Mater. Interfaces 2014, 6, 4603–4608. 10.1021/am405767q. PubMed DOI
Yang H.; Konečná A.; Xu X.; Cheong S.-W.; Batson P. E.; de Abajo F. J. G.; Garfunkel E. Simultaneous Imaging of Dopants and Free Charge Carriers by Monochromated EELS. ACS Nano 2022, 16, 18795–18805. 10.1021/acsnano.2c07540. PubMed DOI
Hage F. S.; Radtke G.; Kepaptsoglou D. M.; Lazzeri M.; Ramasse Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 2020, 367, 1124–1127. 10.1126/science.aba1136. PubMed DOI
Nellist P.; Pennycook S.. The principles and interpretation of annular dark-field Z-contrast imaging; Elsevier, 2000; pp 147–203.
Williams D. B.; Carter C. B.. Transmission Electron Microscopy; Springer, 2009; pp 371–388.
Horák M.; Kepič P.; Kabát J.; Hájek M.; Ligmajer F.; Konečná A.; Šikola T.; Křápek V.. Efficient nanoscale imaging of solid-state phase transitions by transmission electron microscopy demonstrated on vanadium dioxide nanoparticles. arXiv:2408.11972. arXiv.org e-Print archive. https://arxiv.org/abs/2408.11972 (accessed Dec 12, 2024).
Sharoni A.; Ramírez J. G.; Schuller I. K. Multiple Avalanches across the Metal-Insulator Transition of Vanadium Oxide Nanoscaled Junctions. Phys. Rev. Lett. 2008, 101, 02640410.1103/PhysRevLett.101.026404. PubMed DOI
Uhlíř V.; Arregi J. A.; Fullerton E. E. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes. Nat. Commun. 2016, 7, 1311310.1038/ncomms13113. PubMed DOI PMC
Motyčková L.; Arregi J. A.; Staňo M.; Průša S.; Částková K.; Uhlíř V. Preserving Metamagnetism in Self-Assembled FeRh Nanomagnets. ACS Appl. Mater. Interfaces 2023, 15, 8653–8665. 10.1021/acsami.2c20107. PubMed DOI PMC
Jin L.; Shi Y.; Allen F. I.; Chen L.-Q.; Wu J. Probing the Critical Nucleus Size in the Metal-Insulator Phase Transition of VO2. Phys. Rev. Lett. 2022, 129, 24570110.1103/PhysRevLett.129.245701. PubMed DOI
Fried A.; Anouchi E.; Taguri G. C.; Shvartzberg J.; Sharoni A. Film morphology and substrate strain contributions to ramp reversal memory in VO2. Phys. Rev. Mater. 2024, 8, 01500210.1103/PhysRevMaterials.8.015002. DOI
Basak S.; Sun Y.; Banguero M. A.; Salev P.; Schuller I. K.; Aigouy L.; Carlson E. W.; Zimmers A. Spatially Distributed Ramp Reversal Memory in VO2. Adv. Electron. Mater. 2023, 9, 230008510.1002/aelm.202300085. DOI
Cueff S.; John J.; Zhang Z.; Parra J.; Sun J.; Orobtchouk R.; Ramanathan S.; Sanchis P. VO2 nanophotonics. APL Photonics 2020, 5, 11090110.1063/5.0028093. DOI
Kepič P.; Ligmajer F.; Hrtoň M.; Ren H.; de S Menezes L.; Maier S. A.; Šikola T. Optically Tunable Mie Resonance VO2 Nanoantennas for Metasurfaces in the Visible. ACS Photonics 2021, 8, 1048–1057. 10.1021/acsphotonics.1c00222. DOI
Ligmajer F.; Kejík L.; Tiwari U.; Qiu M.; Nag J.; Konečný M.; Šikola T.; Jin W.; Haglund R. F.; Appavoo K.; Lei D. Y. Epitaxial VO2 Nanostructures: A Route to Large-Scale, Switchable Dielectric Metasurfaces. ACS Photonics 2018, 5, 2561–2567. 10.1021/acsphotonics.7b01384. DOI
Suh J. Y.; Lopez R.; Feldman L. C.; Haglund R. F. Semiconductor to metal phase transition in the nucleation and growth of VO2 nanoparticles and thin films. J. Appl. Phys. 2004, 96, 1209–1213. 10.1063/1.1762995. DOI
Kovács G. J.; Bürger D.; Skorupa I.; Reuther H.; Heller R.; Schmidt H. Effect of the substrate on the insulator–metal transition of vanadium dioxide films. J. Appl. Phys. 2011, 109, 06370810.1063/1.3563588. DOI
Lopez R.; Haglund R. F.; Feldman L. C.; Boatner L. A.; Haynes T. E. Optical nonlinearities in VO2 nanoparticles and thin films. Appl. Phys. Lett. 2004, 85, 5191–5193. 10.1063/1.1826232. DOI
Danz T.; Domröse T.; Ropers C. Ultrafast nanoimaging of the order parameter in a structural phase transition. Science 2021, 371, 371–374. 10.1126/science.abd2774. PubMed DOI
Liu K.; Cheng C.; Suh J.; Tang-Kong R.; Fu D.; Lee S.; Zhou J.; Chua L. O.; Wu J. Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition. Adv. Mater. 2014, 26, 1746–1750. 10.1002/adma.201304064. PubMed DOI
Schneider C. A.; Rasband W. S.; Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. 10.1038/nmeth.2089. PubMed DOI PMC
Thevenaz P.; Ruttimann U.; Unser M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 1998, 7, 27–41. 10.1109/83.650848. PubMed DOI
García de Abajo F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010, 82, 209–275. 10.1103/RevModPhys.82.209. DOI
Konečná A.; Venkatraman K.; March K.; Crozier P. A.; Hillenbrand R.; Rez P.; Aizpurua J. Vibrational electron energy loss spectroscopy in truncated dielectric slabs. Phys. Rev. B 2018, 98, 20540910.1103/PhysRevB.98.205409. DOI