Coexisting Phases of Individual VO2 Nanoparticles for Multilevel Nanoscale Memory

. 2025 Jan 14 ; 19 (1) : 1167-1176. [epub] 20250102

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39745284

Vanadium dioxide (VO2) has received significant interest in the context of nanophotonic metamaterials and memories owing to its reversible insulator-metal transition associated with significant changes in its optical and electronic properties. The phase transition of VO2 has been extensively studied for several decades, and the ways how to control its hysteresis characteristics relevant for memory applications have significantly improved. However, the hysteresis dynamics and stability of coexisting phases during the transition have not been studied on the level of individual single-crystal VO2 nanoparticles (NPs), although they represent the fundamental component of ordinary polycrystalline films and can also act like nanoscale memory units on their own. Here, employing transmission electron microscopy techniques, we investigate phase transitions of single VO2 NPs in real time. Our analysis reveals the statistical distribution of the transition temperature and steepness and how they differ during forward (heating) and backward (cooling) transitions. We evaluate the stability of coexisting phases in individual NPs and prove the persistent multilevel memory at near room temperatures using only a few VO2 NPs. Our findings unveil the physical mechanisms that govern the hysteresis of VO2 at the nanoscale and establish VO2 NPs as a promising component of optoelectronic and memory devices with enhanced functionalities.

Zobrazit více v PubMed

Yang J.; Gurung S.; Bej S.; Ni P.; Lee H. W. H. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. Rep. Prog. Phys. 2022, 85, 036101 10.1088/1361-6633/ac2aaf. PubMed DOI

Lian C.; Vagionas C.; Alexoudi T.; Pleros N.; Youngblood N.; Ríos C. Photonic (computational) memories: tunable nanophotonics for data storage and computing. Nanophotonics 2022, 11, 3823–3854. 10.1515/nanoph-2022-0089. PubMed DOI PMC

Youngblood N.; Ocampo C. A. R.; Pernice W. H. P.; Bhaskaran H. Integrated optical memristors. Nat. Photonics 2023, 17, 561–572. 10.1038/s41566-023-01217-w. DOI

Wuttig M.; Bhaskaran H.; Taubner T. Phase-change materials for non-volatile photonic applications. Nat. Photonics 2017, 11, 465–476. 10.1038/nphoton.2017.126. DOI

Ríos C.; Stegmaier M.; Hosseini P.; Wang D.; Scherer T.; Wright C. D.; Bhaskaran H.; Pernice W. H. P. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732. 10.1038/nphoton.2015.182. DOI

Abdollahramezani S.; Hemmatyar O.; Taghinejad M.; Taghinejad H.; Krasnok A.; Eftekhar A. A.; Teichrib C.; Deshmukh S.; El-Sayed M. A.; Pop E.; Wuttig M.; Alù A.; Cai W.; Adibi A. Electrically driven reprogrammable phase-change metasurface reaching 80pct efficiency. Nat. Commun. 2022, 13, 1696 10.1038/s41467-022-29374-6. PubMed DOI PMC

Schofield P.; Bradicich A.; Gurrola R. M.; Zhang Y.; Brown T. D.; Pharr M.; Shamberger P. J.; Banerjee S. Harnessing the Metal–Insulator Transition of VO PubMed DOI

Lee Y. J.; Kim Y.; Gim H.; Hong K.; Jang H. W. Nanoelectronics Using Metal–Insulator Transition. Adv. Mater. 2024, 36, 2305353 10.1002/adma.202305353. PubMed DOI

Gu T.; Kim H. J.; Rivero-Baleine C.; Hu J. Reconfigurable metasurfaces towards commercial success. Nat. Photonics 2023, 17, 48–58. 10.1038/s41566-022-01099-4. DOI

Parra J.; Navarro-Arenas J.; Menghini M.; Recaman M.; Pierre-Locquet J.; Sanchis P. Low-threshold power and tunable integrated optical limiter based on an ultracompact VO DOI

Jung Y.; Han H.; Sharma A.; Jeong J.; Parkin S. S. P.; Poon J. K. S. Integrated Hybrid VO DOI

Jung Y.; Jeong J.; Qu Z.; Cui B.; Khanda A.; Parkin S. S. P.; Poon J. K. S. Observation of Optically Addressable Nonvolatile Memory in VO DOI

Lopez R.; Haynes T. E.; Boatner L. A.; Feldman L. C.; Haglund R. F. Size effects in the structural phase transition of VO DOI

Nishikawa K.; Nishida J.; Yoshimura M.; Nakamoto K.; Kumagai T.; Watanabe Y. Metastability in the Insulator–Metal Transition for Individual Vanadium Dioxide Nanoparticles. J. Phys. Chem. C 2023, 127, 16485–16495. 10.1021/acs.jpcc.3c02151. DOI

Cheng S.; Lee M.-H.; Tran R.; Shi Y.; Li X.; Navarro H.; Adda C.; Meng Q.; Chen L.-Q.; Dynes R. C.; Ong S. P.; Schuller I. K.; Zhu Y. Inherent stochasticity during insulator–metal transition in VO PubMed DOI PMC

Johnson A. S.; Perez-Salinas D.; Siddiqui K. M.; Kim S.; Choi S.; Volckaert K.; Majchrzak P. E.; Ulstrup S.; Agarwal N.; Hallman K.; Haglund R. F.; Günther C. M.; Pfau B.; Eisebitt S.; Backes D.; Maccherozzi F.; Fitzpatrick A.; Dhesi S. S.; Gargiani P.; Valvidares M.; et al. Ultrafast X-ray imaging of the light-induced phase transition in VO DOI

Qazilbash M. M.; Brehm M.; Chae B.-G.; Ho P.-C.; Andreev G. O.; Kim B.-J.; Yun S. J.; Balatsky A. V.; Maple M. B.; Keilmann F.; Kim H.-T.; Basov D. N. Mott Transition in VO PubMed DOI

Huber M. A.; Plankl M.; Eisele M.; Marvel R. E.; Sandner F.; Korn T.; Schüller C.; Haglund R. F.; Huber R.; Cocker T. L. Ultrafast Mid-Infrared Nanoscopy of Strained Vanadium Dioxide Nanobeams. Nano Lett. 2016, 16, 1421–1427. 10.1021/acs.nanolett.5b04988. PubMed DOI

Bae S.; Lee S.; Koo H.; Lin L.; Jo B. H.; Park C.; Wang Z. L. The Memristive Properties of a Single VO PubMed DOI

Andrews J. L.; Santos D. A.; Meyyappan M.; Williams R. S.; Banerjee S. Building Brain-Inspired Logic Circuits from Dynamically Switchable Transition-Metal Oxides. Trends Chem. 2019, 1, 711–726. 10.1016/j.trechm.2019.07.005. DOI

White S. T.; Thompson E. A.; Brown P. F.; Haglund R. F. Substrate Chemistry and Lattice Effects in Vapor Transport Growth of Vanadium Dioxide Microcrystals. Cryst. Growth Des. 2021, 21, 3770–3778. 10.1021/acs.cgd.1c00088. DOI

Wan C.; Zhang Z.; Woolf D.; Hessel C. M.; Rensberg J.; Hensley J. M.; Xiao Y.; Shahsafi A.; Salman J.; Richter S.; Sun Y.; Qazilbash M. M.; Schmidt-Grund R.; Ronning C.; Ramanathan S.; Kats M. A. On the Optical Properties of Thin-Film Vanadium Dioxide from the Visible to the Far Infrared. Ann. Phys. 2019, 531, 1900188 10.1002/andp.201900188. DOI

Donev E. U.; Lopez R.; Feldman L. C.; Haglund R. F. Confocal Raman Microscopy Across The Metal-Insulator Transition of Single Vanadium Dioxide Nanoparticles. Nano Lett. 2009, 9, 702–706. 10.1021/nl8031839. PubMed DOI

Appavoo K.; Lei D. Y.; Sonnefraud Y.; Wang B.; Pantelides S. T.; Maier S. A.; Haglund R. F. Role of Defects in the Phase Transition of VO PubMed DOI

Clarke H.; Carraway B. D.; Sellers D. G.; Braham E. J.; Banerjee S.; Arróyave R.; Shamberger P. J. Nucleation-controlled hysteresis in unstrained hydrothermal VO DOI

Lei D. Y.; Appavoo K.; Ligmajer F.; Sonnefraud Y.; Haglund R. F.; Maier S. A. Optically-Triggered Nanoscale Memory Effect in a Hybrid Plasmonic-Phase Changing Nanostructure. ACS Photonics 2015, 2, 1306–1313. 10.1021/acsphotonics.5b00249. DOI

Zhi B.; Gao G.; Xu H.; Chen F.; Tan X.; Chen P.; Wang L.; Wu W. Electric-Field-Modulated Nonvolatile Resistance Switching in VO PubMed DOI

Yang H.; Konečná A.; Xu X.; Cheong S.-W.; Batson P. E.; de Abajo F. J. G.; Garfunkel E. Simultaneous Imaging of Dopants and Free Charge Carriers by Monochromated EELS. ACS Nano 2022, 16, 18795–18805. 10.1021/acsnano.2c07540. PubMed DOI

Hage F. S.; Radtke G.; Kepaptsoglou D. M.; Lazzeri M.; Ramasse Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 2020, 367, 1124–1127. 10.1126/science.aba1136. PubMed DOI

Nellist P.; Pennycook S.. The principles and interpretation of annular dark-field Z-contrast imaging; Elsevier, 2000; pp 147–203.

Williams D. B.; Carter C. B.. Transmission Electron Microscopy; Springer, 2009; pp 371–388.

Horák M.; Kepič P.; Kabát J.; Hájek M.; Ligmajer F.; Konečná A.; Šikola T.; Křápek V.. Efficient nanoscale imaging of solid-state phase transitions by transmission electron microscopy demonstrated on vanadium dioxide nanoparticles. arXiv:2408.11972. arXiv.org e-Print archive. https://arxiv.org/abs/2408.11972 (accessed Dec 12, 2024).

Sharoni A.; Ramírez J. G.; Schuller I. K. Multiple Avalanches across the Metal-Insulator Transition of Vanadium Oxide Nanoscaled Junctions. Phys. Rev. Lett. 2008, 101, 026404 10.1103/PhysRevLett.101.026404. PubMed DOI

Uhlíř V.; Arregi J. A.; Fullerton E. E. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes. Nat. Commun. 2016, 7, 13113 10.1038/ncomms13113. PubMed DOI PMC

Motyčková L.; Arregi J. A.; Staňo M.; Průša S.; Částková K.; Uhlíř V. Preserving Metamagnetism in Self-Assembled FeRh Nanomagnets. ACS Appl. Mater. Interfaces 2023, 15, 8653–8665. 10.1021/acsami.2c20107. PubMed DOI PMC

Jin L.; Shi Y.; Allen F. I.; Chen L.-Q.; Wu J. Probing the Critical Nucleus Size in the Metal-Insulator Phase Transition of VO PubMed DOI

Fried A.; Anouchi E.; Taguri G. C.; Shvartzberg J.; Sharoni A. Film morphology and substrate strain contributions to ramp reversal memory in VO DOI

Basak S.; Sun Y.; Banguero M. A.; Salev P.; Schuller I. K.; Aigouy L.; Carlson E. W.; Zimmers A. Spatially Distributed Ramp Reversal Memory in VO DOI

Cueff S.; John J.; Zhang Z.; Parra J.; Sun J.; Orobtchouk R.; Ramanathan S.; Sanchis P. VO DOI

Kepič P.; Ligmajer F.; Hrtoň M.; Ren H.; de S Menezes L.; Maier S. A.; Šikola T. Optically Tunable Mie Resonance VO DOI

Ligmajer F.; Kejík L.; Tiwari U.; Qiu M.; Nag J.; Konečný M.; Šikola T.; Jin W.; Haglund R. F.; Appavoo K.; Lei D. Y. Epitaxial VO DOI

Suh J. Y.; Lopez R.; Feldman L. C.; Haglund R. F. Semiconductor to metal phase transition in the nucleation and growth of VO DOI

Kovács G. J.; Bürger D.; Skorupa I.; Reuther H.; Heller R.; Schmidt H. Effect of the substrate on the insulator–metal transition of vanadium dioxide films. J. Appl. Phys. 2011, 109, 063708 10.1063/1.3563588. DOI

Lopez R.; Haglund R. F.; Feldman L. C.; Boatner L. A.; Haynes T. E. Optical nonlinearities in VO DOI

Danz T.; Domröse T.; Ropers C. Ultrafast nanoimaging of the order parameter in a structural phase transition. Science 2021, 371, 371–374. 10.1126/science.abd2774. PubMed DOI

Liu K.; Cheng C.; Suh J.; Tang-Kong R.; Fu D.; Lee S.; Zhou J.; Chua L. O.; Wu J. Powerful, Multifunctional Torsional Micromuscles Activated by Phase Transition. Adv. Mater. 2014, 26, 1746–1750. 10.1002/adma.201304064. PubMed DOI

Schneider C. A.; Rasband W. S.; Eliceiri K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. 10.1038/nmeth.2089. PubMed DOI PMC

Thevenaz P.; Ruttimann U.; Unser M. A pyramid approach to subpixel registration based on intensity. IEEE Trans. Image Process. 1998, 7, 27–41. 10.1109/83.650848. PubMed DOI

García de Abajo F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010, 82, 209–275. 10.1103/RevModPhys.82.209. DOI

Konečná A.; Venkatraman K.; March K.; Crozier P. A.; Hillenbrand R.; Rez P.; Aizpurua J. Vibrational electron energy loss spectroscopy in truncated dielectric slabs. Phys. Rev. B 2018, 98, 205409 10.1103/PhysRevB.98.205409. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Bismuth Plasmonic Antennas

. 2025 Sep 16 ; 19 (36) : 32299-32305. [epub] 20250901

Plasmonic Response to Liquid-Solid Phase Transition in Individual Gallium Nanoparticles

. 2025 Sep 04 ; 16 (35) : 8891-8896. [epub] 20250821

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...