Single-Atom Catalysts on C3N4: Minimizing Single Atom Pt Loading for Maximized Photocatalytic Hydrogen Production Efficiency

. 2025 Feb 03 ; 64 (6) : e202416453. [epub] 20250102

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39670675

Grantová podpora
No.CZ.02.1.01/0.0/0.0/15_003/0000416 European Regional Development Fund
No. 23-08019X Czech Science Foundation

The use of metal single atoms (SAs) as co-catalysts on semiconductors has emerged as a promising technology to enhance their photocatalytic hydrogen production performance. In this study, we describe the deposition of very low amounts of Pt SAs (<0.1 at %) on exfoliated graphitic carbon nitride (C3N4) by a direct Pt-deposition approach from highly dilute chloroplatinic acid precursors. We find that - using this technique-a remarkably low loading of highly dispersed Pt SAs (0.03 wt %) on C3N4 is sufficient to achieve a drastic decrease in the overall charge transfer resistance and a maximized photocatalytic efficiency. The resulting low-loaded Pt SAs/C3N4 provides a H2 production rate of 1.66 m mol/h/mg Pt, with a remarkable stability against agglomeration; even during prolonged photocatalytic reactions no sign of light-induced Pt agglomerations can be observed. We ascribe the high performance and stability to the site-selective, stable coordination of Pt within the C3N4 structure. Notably the H2 production rate of the low-loaded Pt SAs surpasses the activity of Pt SAs deposited by other techniques or nanoparticles at comparable or even higher loading - the optimized Pt SAs decorated C3N4 show ≈5.9 times higher rate than Pt NP decorated C3N4.

Zobrazit více v PubMed

Maeda K., J. Photochem. Photobiol. C: Photochem. Rev. 2011, 12 (4), 237–268. 10.1016/j.jphotochemrev.2011.07.001. DOI

Maeda K., Domen K., J. Phys. Chem. Lett. 2010, 1 (18), 2655–2661. 10.1021/jz1007966. DOI

Nakata K., Fujishima A., J. Photochem. Photobiol. C: Photochem. Rev. 2012, 13 (3), 169–189. 10.1016/j.jphotochemrev.2012.06.001. DOI

Sohail M., Rauf S., Irfan M., Hayat A., Alghamdi M. M., El-Zahhar A. A., Ghernaout D., Al-Hadeethi Y., Lv W., Nanoscale Adv. 2024. 10.1039/D3NA00442B. PubMed DOI PMC

Fujishima A., Honda K., Nature 1972, 238 (5358), 37–38. 10.1038/238037a0. PubMed DOI

A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production, Renew. Sustain. Energy Rev. 2007, 11 (3), 401–425. 10.1016/j.rser.2005.01.009.

Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M., Nat. Mater. 2009, 8 (1), 76–80. 10.1038/nmat2317. PubMed DOI

Ong W.-J., Tan L.-L., Ng Y. H., Yong S.-T., Chai S.-P., Chem. Rev. 2016, 116 (12), 7159–7329. 10.1021/acs.chemrev.6b00075. PubMed DOI

Mamba G., Mishra A. K., Appl. Catal. B: Environ. 2016, 198, 347–377. 10.1016/j.apcatb.2016.05.052. DOI

Pei J., Li H., Zhuang S., Zhang D., Yu D., Catalysts 2023, 13 (11), 1402. 10.3390/catal13111402. DOI

Point-Defect Engineering: Leveraging Imperfections in Graphitic Carbon Nitride (g-C3 N4) Photocatalysts toward Artificial Photosynthesis - Yu - 2021 - Small - Wiley Online Library. 10.1002/smll.202006851 (accessed 2024–02–08). PubMed DOI

Yang C., Xue Z., Qin J., Sawangphruk M., Zhang X., Liu R., Appl. Catal. B: Environ. 2019, 259, 118094. 10.1016/j.apcatb.2019.118094. DOI

Tahir M., Sherryna A., Khan A. A., Madi M., Zerga A. Y., Tahir B., Energy Fuels 2022, 36 (16), 8948–8977. 10.1021/acs.energyfuels.2c01256. DOI

Ong W. J., Tan L. L., Chai S. P., Yong S. T., Dalton Trans. 2014, 44(3), 1249–1257. 10.1039/C4DT02940B. PubMed DOI

Shiraishi Y., Kanazawa S., Sugano Y., Tsukamoto D., Sakamoto H., Ichikawa S., Hirai T., ACS Catal. 2014, 4(3), 774–780. 10.1021/cs401208c. DOI

Liu H., Chen D., Wang Z., Jing H., Zhang R., Appl. Catal. B: Environ. 2017, 203, 300–313. 10.1016/j.apcatb.2016.10.014. DOI

Zeng Y., Liu C., Wang L., Zhang S., Ding Y., Xu Y., Liu Y., Luo S., J. Mater. Chem. A 2016, 4(48), 19003–19010. 10.1039/C6TA07397B. DOI

Kočí K., Dang Van H., Edelmannová M., Reli M., Wu J. C. S., Appl. Surf. Sci. 2020, 503, 144426. 10.1016/j.apsusc.2019.144426. DOI

Wu C., Xue S., Qin Z., Nazari M., Yang G., Yue S., Tong T., Ghasemi H., Hernandez F. C. R., Xue S., Zhang D., Wang H., Wang Z. M., Pu S., Bao J., Appl. Catal. B: Environ. 2021, 282, 119557. 10.1016/j.apcatb.2020.119557. DOI

P S. P., John J., Rajan T. P. D., Anilkumar G. M., Yamaguchi T., Pillai S. C., Hareesh U. S., J. Mater. Chem. A 2023, 11(16), 8599–8646. 10.1039/D2TA09776A. DOI

Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y., Chem. Rev. 2020, 120(21), 12175–12216. 10.1021/acs.chemrev.9b00840. PubMed DOI

Zhang L., Long R., Zhang Y., Duan D., Xiong Y., Zhang Y., Bi Y., Angew. Chem. Int. Ed. 2020, 59(15), 6224–6229. 10.1002/anie.201915774. PubMed DOI

Li X., Bi W., Zhang L., Tao S., Chu W., Zhang Q., Luo Y., Wu C., Xie Y., Adv. Mater. 2016, 28(12), 2427–2431. 10.1002/adma.201505281. PubMed DOI

Zuo Y., Li T., Zhang N., Jing T., Rao D., Schmuki P., Kment Š., Zbořil R., Chai Y., ACS Nano 2021, 15(4), 7790–7798. 10.1021/acsnano.1c01872. PubMed DOI

Hu Y., Qu Y., Zhou Y., Wang Z., Wang H., Yang B., Yu Z., Wu Y., Chem. Eng. J. 2021, 412, 128749. 10.1016/j.cej.2021.128749. DOI

Su H., Che W., Tang F., Cheng W., Zhao X., Zhang H., Liu Q., J. Phys. Chem. C 2018, 122 (37), 21108–21114. 10.1021/acs.jpcc.8b03383. DOI

Deng D., Chen X., Yu L., Wu X., Liu Q., Liu Y., Yang H., Tian H., Hu Y., Du P., Si R., Wang J., Cui X., Li H., Xiao J., Xu T., Deng J., Yang F., Duchesne P. N., Zhang P., Zhou J., Sun L., Li J., Pan X., Bao X., Sci. Adv. 2015, 1 (11), e1500462. 10.1126/sciadv.1500462. PubMed DOI PMC

Han A., Wang X., Tang K., Zhang Z., Ye C., Kong K., Hu H., Zheng L., Jiang P., Zhao C., Zhang Q., Wang D., Li Y., Angew. Chem. Int. Ed. 2021, 60 (35), 19262–19271. 10.1002/anie.202105186. PubMed DOI

Li Y., Wang Z., Xia T., Ju H., Zhang K., Long R., Xu Q., Wang C., Song L., Zhu J., Jiang J., Xiong Y., Adv. Mater. 2016, 28 (32), 6959–6965. 10.1002/adma.201601960. PubMed DOI

Qin S., Denisov N., Will J., Kolařík J., Spiecker E., Schmuki P., Solar RRL 2022, 6. 10.1002/solr.202101026. DOI

Qin S., Will J., Kim H., Denisov N., Carl S., Spiecker E., Schmuki P., ACS Energy Lett. 2023, 8 (2), 1209–1214. 10.1021/acsenergylett.2c02801. DOI

Cha G., Mazare A., Hwang I., Denisov N., Will J., Yokosawa T., Badura Z., Zoppellaro G., Tesler A. B., Spiecker E., Schmuki P., Electrochim. Acta 2022, 412, 140129. 10.1016/j.electacta.2022.140129. DOI

Wu Z., Hwang I., Cha G., Qin S., Tomanec O., Badura Z., Kment S., Zboril R., Schmuki P., Small 2022, 18 (2), 2104892. 10.1002/smll.202104892. PubMed DOI

Pt Single Atoms on TiO2 Polymorphs – Minimum Loading with a Maximized Photocatalytic Efficiency - Qin - 2022 - Advanced Materials Interfaces - Wiley Online Library. 10.1002/admi.202200808 (accessed 2024–02–08). DOI

Wu S. M., Hwang I., Osuagwu B., Will J., Wu Z., Sarma B. B., Pu F. F., Wang L. Y., Badura Z., Zoppellaro G., Spiecker E., Schmuki P., ACS Catal. 2023, 13 (1), 33–41. 10.1021/acscatal.2c04481. DOI

Wang Y., Qin S., Denisov N., Kim H., Baďura Z., Sarma B., Schmuki P., Adv. Mater. 2023, 35, e2211814. 10.1002/adma.202211814. PubMed DOI

Marchal C., Cottineau T., Mendez Medrano M., Colbeau-Justin C., Caps V., Keller V., Adv. Energy Mater. 2018, 8, 1702142. 10.1002/aenm.201702142. DOI

Karimi-Nazarabad M., Ahmadzadeh H., Goharshadi E. K., Sol. Energy 2021, 227, 426–437. 10.1016/j.solener.2021.09.028. DOI

Torres-Pinto A., Sampaio M. J., Silva C. G., Faria J. L., Silva A. M. T., Appl. Catal. B: Environ. 2019, 252, 128–137. 10.1016/j.apcatb.2019.03.040. DOI

Zhu Y., Wang T., Xu T., Li Y., Wang C., Appl. Surf. Sci. 2019, 464, 36–42. 10.1016/j.apsusc.2018.09.061. DOI

Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools | Chemical Reviews. 10.1021/acs.chemrev.2c00495 (accessed 2024–11–17). PubMed DOI PMC

Sarma B. B., Jelic J., Neukum D., Doronkin D. E., Huang X., Studt F., Grunwaldt J.-D., J. Phys. Chem. C 2023, 127 (6), 3032–3046. 10.1021/acs.jpcc.2c07263. DOI

Sun D.-W., Long C.-C., Huang J.-H., Int. J. Hydrogen Energy 2023, 48 (3), 943–952. 10.1016/j.ijhydene.2022.09.294. DOI

He C., Li Q., Ye Z., Wang L., Gong Y., Li S., Wu J., Lu Z., Wu S., Zhang J., Angew. Chem. Int. Ed. n/a, e202412308. 10.1002/anie.202412308. PubMed DOI

Zeng Z., Su Y., Quan X., Choi W., Zhang G., Liu N., Kim B., Chen S., Yu H., Zhang S., Nano Energy 2020, 69, 104409. 10.1016/j.nanoen.2019.104409. DOI

Xue Z., Yan M., Zhang Y., Xu J., Gao X., Wu Y., Appl. Catal. B: Environ. 2023, 325, 122303. 10.1016/j.apcatb.2022.122303. DOI

Wu S.-M., Wu L., Denisov N., Badura Z., Zoppellaro G., Yang X.-Y., Schmuki P., J. Am. Chem. Soc. 2024, 146 (24), 16363–16368. 10.1021/jacs.4c03319. PubMed DOI

Zhang M., Lai C., Xu F., Huang D., Hu T., Li B., Ma D., Liu S., Fu Y., Li L., Tang L., Chen L., Small 2023, 19 (34), 2301817. 10.1002/smll.202301817. PubMed DOI

Mahvelati-Shamsabadi T., Bhamu K. C., Lee S., Dang T. T., Khoi V. H., Hur S. H., Choi W. M., Kang S. G., Shin T. J., Chung J. S., Appl. Catal. B: Environ. 2023, 337, 122959. 10.1016/j.apcatb.2023.122959. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Single Atom Cocatalysts in Photocatalysis

. 2025 Feb ; 37 (7) : e2414889. [epub] 20241229

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...