Single-Atom Catalysts on C3N4: Minimizing Single Atom Pt Loading for Maximized Photocatalytic Hydrogen Production Efficiency
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
No.CZ.02.1.01/0.0/0.0/15_003/0000416
European Regional Development Fund
No. 23-08019X
Czech Science Foundation
PubMed
39670675
PubMed Central
PMC11795736
DOI
10.1002/anie.202416453
Knihovny.cz E-zdroje
- Klíčová slova
- C3N4, H2 evolution, Pt single atoms, dark deposition, photocatalysis,
- Publikační typ
- časopisecké články MeSH
The use of metal single atoms (SAs) as co-catalysts on semiconductors has emerged as a promising technology to enhance their photocatalytic hydrogen production performance. In this study, we describe the deposition of very low amounts of Pt SAs (<0.1 at %) on exfoliated graphitic carbon nitride (C3N4) by a direct Pt-deposition approach from highly dilute chloroplatinic acid precursors. We find that - using this technique-a remarkably low loading of highly dispersed Pt SAs (0.03 wt %) on C3N4 is sufficient to achieve a drastic decrease in the overall charge transfer resistance and a maximized photocatalytic efficiency. The resulting low-loaded Pt SAs/C3N4 provides a H2 production rate of 1.66 m mol/h/mg Pt, with a remarkable stability against agglomeration; even during prolonged photocatalytic reactions no sign of light-induced Pt agglomerations can be observed. We ascribe the high performance and stability to the site-selective, stable coordination of Pt within the C3N4 structure. Notably the H2 production rate of the low-loaded Pt SAs surpasses the activity of Pt SAs deposited by other techniques or nanoparticles at comparable or even higher loading - the optimized Pt SAs decorated C3N4 show ≈5.9 times higher rate than Pt NP decorated C3N4.
Zobrazit více v PubMed
Maeda K., J. Photochem. Photobiol. C: Photochem. Rev. 2011, 12 (4), 237–268. 10.1016/j.jphotochemrev.2011.07.001. DOI
Maeda K., Domen K., J. Phys. Chem. Lett. 2010, 1 (18), 2655–2661. 10.1021/jz1007966. DOI
Nakata K., Fujishima A., J. Photochem. Photobiol. C: Photochem. Rev. 2012, 13 (3), 169–189. 10.1016/j.jphotochemrev.2012.06.001. DOI
Sohail M., Rauf S., Irfan M., Hayat A., Alghamdi M. M., El-Zahhar A. A., Ghernaout D., Al-Hadeethi Y., Lv W., Nanoscale Adv. 2024. 10.1039/D3NA00442B. PubMed DOI PMC
Fujishima A., Honda K., Nature 1972, 238 (5358), 37–38. 10.1038/238037a0. PubMed DOI
A Review and Recent Developments in Photocatalytic Water-Splitting Using TiO2 for Hydrogen Production, Renew. Sustain. Energy Rev. 2007, 11 (3), 401–425. 10.1016/j.rser.2005.01.009.
Wang X., Maeda K., Thomas A., Takanabe K., Xin G., Carlsson J. M., Domen K., Antonietti M., Nat. Mater. 2009, 8 (1), 76–80. 10.1038/nmat2317. PubMed DOI
Ong W.-J., Tan L.-L., Ng Y. H., Yong S.-T., Chai S.-P., Chem. Rev. 2016, 116 (12), 7159–7329. 10.1021/acs.chemrev.6b00075. PubMed DOI
Mamba G., Mishra A. K., Appl. Catal. B: Environ. 2016, 198, 347–377. 10.1016/j.apcatb.2016.05.052. DOI
Pei J., Li H., Zhuang S., Zhang D., Yu D., Catalysts 2023, 13 (11), 1402. 10.3390/catal13111402. DOI
Point-Defect Engineering: Leveraging Imperfections in Graphitic Carbon Nitride (g-C3 N4) Photocatalysts toward Artificial Photosynthesis - Yu - 2021 - Small - Wiley Online Library. 10.1002/smll.202006851 (accessed 2024–02–08). PubMed DOI
Yang C., Xue Z., Qin J., Sawangphruk M., Zhang X., Liu R., Appl. Catal. B: Environ. 2019, 259, 118094. 10.1016/j.apcatb.2019.118094. DOI
Tahir M., Sherryna A., Khan A. A., Madi M., Zerga A. Y., Tahir B., Energy Fuels 2022, 36 (16), 8948–8977. 10.1021/acs.energyfuels.2c01256. DOI
Ong W. J., Tan L. L., Chai S. P., Yong S. T., Dalton Trans. 2014, 44(3), 1249–1257. 10.1039/C4DT02940B. PubMed DOI
Shiraishi Y., Kanazawa S., Sugano Y., Tsukamoto D., Sakamoto H., Ichikawa S., Hirai T., ACS Catal. 2014, 4(3), 774–780. 10.1021/cs401208c. DOI
Liu H., Chen D., Wang Z., Jing H., Zhang R., Appl. Catal. B: Environ. 2017, 203, 300–313. 10.1016/j.apcatb.2016.10.014. DOI
Zeng Y., Liu C., Wang L., Zhang S., Ding Y., Xu Y., Liu Y., Luo S., J. Mater. Chem. A 2016, 4(48), 19003–19010. 10.1039/C6TA07397B. DOI
Kočí K., Dang Van H., Edelmannová M., Reli M., Wu J. C. S., Appl. Surf. Sci. 2020, 503, 144426. 10.1016/j.apsusc.2019.144426. DOI
Wu C., Xue S., Qin Z., Nazari M., Yang G., Yue S., Tong T., Ghasemi H., Hernandez F. C. R., Xue S., Zhang D., Wang H., Wang Z. M., Pu S., Bao J., Appl. Catal. B: Environ. 2021, 282, 119557. 10.1016/j.apcatb.2020.119557. DOI
P S. P., John J., Rajan T. P. D., Anilkumar G. M., Yamaguchi T., Pillai S. C., Hareesh U. S., J. Mater. Chem. A 2023, 11(16), 8599–8646. 10.1039/D2TA09776A. DOI
Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y., Chem. Rev. 2020, 120(21), 12175–12216. 10.1021/acs.chemrev.9b00840. PubMed DOI
Zhang L., Long R., Zhang Y., Duan D., Xiong Y., Zhang Y., Bi Y., Angew. Chem. Int. Ed. 2020, 59(15), 6224–6229. 10.1002/anie.201915774. PubMed DOI
Li X., Bi W., Zhang L., Tao S., Chu W., Zhang Q., Luo Y., Wu C., Xie Y., Adv. Mater. 2016, 28(12), 2427–2431. 10.1002/adma.201505281. PubMed DOI
Zuo Y., Li T., Zhang N., Jing T., Rao D., Schmuki P., Kment Š., Zbořil R., Chai Y., ACS Nano 2021, 15(4), 7790–7798. 10.1021/acsnano.1c01872. PubMed DOI
Hu Y., Qu Y., Zhou Y., Wang Z., Wang H., Yang B., Yu Z., Wu Y., Chem. Eng. J. 2021, 412, 128749. 10.1016/j.cej.2021.128749. DOI
Su H., Che W., Tang F., Cheng W., Zhao X., Zhang H., Liu Q., J. Phys. Chem. C 2018, 122 (37), 21108–21114. 10.1021/acs.jpcc.8b03383. DOI
Deng D., Chen X., Yu L., Wu X., Liu Q., Liu Y., Yang H., Tian H., Hu Y., Du P., Si R., Wang J., Cui X., Li H., Xiao J., Xu T., Deng J., Yang F., Duchesne P. N., Zhang P., Zhou J., Sun L., Li J., Pan X., Bao X., Sci. Adv. 2015, 1 (11), e1500462. 10.1126/sciadv.1500462. PubMed DOI PMC
Han A., Wang X., Tang K., Zhang Z., Ye C., Kong K., Hu H., Zheng L., Jiang P., Zhao C., Zhang Q., Wang D., Li Y., Angew. Chem. Int. Ed. 2021, 60 (35), 19262–19271. 10.1002/anie.202105186. PubMed DOI
Li Y., Wang Z., Xia T., Ju H., Zhang K., Long R., Xu Q., Wang C., Song L., Zhu J., Jiang J., Xiong Y., Adv. Mater. 2016, 28 (32), 6959–6965. 10.1002/adma.201601960. PubMed DOI
Qin S., Denisov N., Will J., Kolařík J., Spiecker E., Schmuki P., Solar RRL 2022, 6. 10.1002/solr.202101026. DOI
Qin S., Will J., Kim H., Denisov N., Carl S., Spiecker E., Schmuki P., ACS Energy Lett. 2023, 8 (2), 1209–1214. 10.1021/acsenergylett.2c02801. DOI
Cha G., Mazare A., Hwang I., Denisov N., Will J., Yokosawa T., Badura Z., Zoppellaro G., Tesler A. B., Spiecker E., Schmuki P., Electrochim. Acta 2022, 412, 140129. 10.1016/j.electacta.2022.140129. DOI
Wu Z., Hwang I., Cha G., Qin S., Tomanec O., Badura Z., Kment S., Zboril R., Schmuki P., Small 2022, 18 (2), 2104892. 10.1002/smll.202104892. PubMed DOI
Pt Single Atoms on TiO2 Polymorphs – Minimum Loading with a Maximized Photocatalytic Efficiency - Qin - 2022 - Advanced Materials Interfaces - Wiley Online Library. 10.1002/admi.202200808 (accessed 2024–02–08). DOI
Wu S. M., Hwang I., Osuagwu B., Will J., Wu Z., Sarma B. B., Pu F. F., Wang L. Y., Badura Z., Zoppellaro G., Spiecker E., Schmuki P., ACS Catal. 2023, 13 (1), 33–41. 10.1021/acscatal.2c04481. DOI
Wang Y., Qin S., Denisov N., Kim H., Baďura Z., Sarma B., Schmuki P., Adv. Mater. 2023, 35, e2211814. 10.1002/adma.202211814. PubMed DOI
Marchal C., Cottineau T., Mendez Medrano M., Colbeau-Justin C., Caps V., Keller V., Adv. Energy Mater. 2018, 8, 1702142. 10.1002/aenm.201702142. DOI
Karimi-Nazarabad M., Ahmadzadeh H., Goharshadi E. K., Sol. Energy 2021, 227, 426–437. 10.1016/j.solener.2021.09.028. DOI
Torres-Pinto A., Sampaio M. J., Silva C. G., Faria J. L., Silva A. M. T., Appl. Catal. B: Environ. 2019, 252, 128–137. 10.1016/j.apcatb.2019.03.040. DOI
Zhu Y., Wang T., Xu T., Li Y., Wang C., Appl. Surf. Sci. 2019, 464, 36–42. 10.1016/j.apsusc.2018.09.061. DOI
Design of Single-Atom Catalysts and Tracking Their Fate Using Operando and Advanced X-ray Spectroscopic Tools | Chemical Reviews. 10.1021/acs.chemrev.2c00495 (accessed 2024–11–17). PubMed DOI PMC
Sarma B. B., Jelic J., Neukum D., Doronkin D. E., Huang X., Studt F., Grunwaldt J.-D., J. Phys. Chem. C 2023, 127 (6), 3032–3046. 10.1021/acs.jpcc.2c07263. DOI
Sun D.-W., Long C.-C., Huang J.-H., Int. J. Hydrogen Energy 2023, 48 (3), 943–952. 10.1016/j.ijhydene.2022.09.294. DOI
He C., Li Q., Ye Z., Wang L., Gong Y., Li S., Wu J., Lu Z., Wu S., Zhang J., Angew. Chem. Int. Ed. n/a, e202412308. 10.1002/anie.202412308. PubMed DOI
Zeng Z., Su Y., Quan X., Choi W., Zhang G., Liu N., Kim B., Chen S., Yu H., Zhang S., Nano Energy 2020, 69, 104409. 10.1016/j.nanoen.2019.104409. DOI
Xue Z., Yan M., Zhang Y., Xu J., Gao X., Wu Y., Appl. Catal. B: Environ. 2023, 325, 122303. 10.1016/j.apcatb.2022.122303. DOI
Wu S.-M., Wu L., Denisov N., Badura Z., Zoppellaro G., Yang X.-Y., Schmuki P., J. Am. Chem. Soc. 2024, 146 (24), 16363–16368. 10.1021/jacs.4c03319. PubMed DOI
Zhang M., Lai C., Xu F., Huang D., Hu T., Li B., Ma D., Liu S., Fu Y., Li L., Tang L., Chen L., Small 2023, 19 (34), 2301817. 10.1002/smll.202301817. PubMed DOI
Mahvelati-Shamsabadi T., Bhamu K. C., Lee S., Dang T. T., Khoi V. H., Hur S. H., Choi W. M., Kang S. G., Shin T. J., Chung J. S., Appl. Catal. B: Environ. 2023, 337, 122959. 10.1016/j.apcatb.2023.122959. DOI
Single Atom Cocatalysts in Photocatalysis