Optimized Pt Single Atom Harvesting on TiO2 Nanotubes-Towards a Most Efficient Photocatalyst
Language English Country Germany Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- Keywords
- TiO 2 nanotubes, dark deposition, hydrogen generation, photocatalysis, single-atom catalysis,
- MeSH
- Catalysis MeSH
- Nanoparticles * MeSH
- Nanotubes * chemistry MeSH
- Titanium chemistry MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Titanium MeSH
- titanium dioxide MeSH Browser
In the present work the authors show that anodic TiO2 nanotubes (NT) show excellent harvesting properties for Pt single atoms (Pt SAs) from highly dilute Pt solutions. The tube walls of anodic nanotubes, after adequate annealing to anatase, provide ample of suitable trapping sites-that is, surface Ti3+ -Ov (Ov : oxygen vacancy) defects that are highly effective to extract and accumulate Pt in the form of SAs. A saturated (maximized) SA density can be achieved by an overnight immersion of a TiO2 NT layer to a H2 PtCl6 solution with a concentration that is as low as 0.01 mm Pt. Such TiO2 NTs with surface trapped Pt SAs provide a maximized high activity for photocatalytic H2 generation (reaching a turnover frequency (TOF) of 1.24 × 106 h-1 at a density of 1.4 × 105 Pt atoms µm-2 )-a higher loading with Pt nanoparticles does not further increase the photocatalytic activity. Overall, these findings show that anodic TiO2 nanotubes provide a remarkable substrate for Pt extraction and recovery from very dilute solutions that directly results in a highly efficient photocatalyst, fabricated by a simple immersion technique.
See more in PubMed
C. Gao, J. Low, R. Long, T. Kong, J. Zhu, Y. Xiong, Chem. Rev. 2020, 120, 12175.
J. Liu, ACS Catal. 2017, 7, 34.
X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Acc. Chem. Res. 2013, 46, 1740.
C. Zhu, S. Fu, Q. Shi, D. Du, Y. Lin, Angew. Chem., Int. Ed. Engl. 2017, 56, 13944.
T. L. Thompson, J. T. Yates, Chem. Rev. 2006, 106, 4428.
Heterogeneous Photocatalysis: Relationships with Heterogeneous Catalysis and Perspectives, (Eds: G. Marci, L. Palmisano), Elsevier, Amsterdam 2019.
M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemann, Chem. Rev. 1995, 95, 69.
B. König, Science of Synthesis: Photocatalysis in Organic Synthesis, Thieme, Stuttgart, Germany 2019.
A. Fujishima, X. Zhang, D. Tryk, Surf. Sci. Rep. 2008, 63, 515.
H. Kisch, Semiconductor Photocatalysis: Principles and Applications, Wiley-VCH, Weinheim, Germany 2015.
N. T. Nguyen, S. Ozkan, O. Tomanec, X. Zhou, R. Zboril, P. Schmuki, J. Mater. Chem. A 2018, 6, 13599.
B. E. Sanabria-Arenas, A. Mazare, J. Yoo, N. T. Nguyen, S. Hejazi, H. Bian, M. V. Diamanti, M. P. Pedeferri, P. Schmuki, Electrochim. Acta 2018, 292, 865.
H. Bian, N. T. Nguyen, J. Yoo, S. Hejazi, S. Mohajernia, J. Müller, E. Spiecker, H. Tsuchiya, O. Tomanec, B. E. Sanabria-Arenas, R. Zboril, Y. Y. Li, P. Schmuki, ACS Appl. Mater. Interfaces 2018, 10, 18220.
H. Yu, X. Wang, H. Sun, M. Huo, J. Hazard. Mater. 2010, 184, 753.
C. Dessal, L. Martínez, C. Maheu, T. Len, F. Morfin, J. L. Rousset, E. Puzenat, P. Afanasiev, M. Aouine, L. Soler, J. Llorca, L. Piccolo, J. Catal. 2019, 375, 155.
D. Wang, Z.-P. Liu, W.-M. Yang, ACS Catal. 2018, 8, 7270.
G. Gao, X. Niu, B. Xu, X. L. Wang, Y.-F. Yao, Catal. Sci. Technol. 2020, 10, 5438.
K. Jiang, S. Siahrostami, T. Zheng, Y. Hu, S. Hwang, E. Stavitski, Y. Peng, J. Dynes, M. Gangisetty, D. Su, K. Attenkofer, H. Wang, Energy Environ. Sci. 2018, 11, 893.
J. Xing, J. F. Chen, Y. H. Li, W. T. Yuan, Y. Zhou, L. R. Zheng, H. F. Wang, P. Hu, Y. Wang, H. J. Zhao, Y. Wang, H. G. Yang, Chem. - Eur. J. 2014, 20, 2138.
Y. H. Li, J. Xing, X. H. Yang, H. G. Yang, Chem. - Eur. J. 2014, 20, 12377.
T.-N. Ye, Z. Xiao, J. Li, Y. Gong, H. Abe, Y. Niwa, M. Sasase, M. Kitano, H. Hosono, Nat. Commun. 2020, 11, 1020.
F. Ling, W. Xia, L. Li, X. Zhou, X. Luo, Q. Bu, J. Huang, X. Liu, W. Kang, M. Zhou, ACS Appl. Mater. Interfaces 2021, 13, 17412.
X. G. Li, W. T. Bi, L. Zhang, S. Tao, W. S. Chu, Q. Zhang, Y. Luo, C. Z. Wu, Y. Xie, Adv. Mater. 2016, 28, 2427.
Y. Cao, D. Wang, Y. Lin, W. Liu, L. Cao, X. Liu, W. Zhang, X. Mou, S. Fang, X. Shen, T. Yao, ACS Appl. Energy Mater. 2018, 1, 6082.
L. Jiao, H. Jiang, Chem 2019, 5, 786.
T. Wang, X. Tao, X. Li, K. Zhang, S. Liu, B. Li, Small 2020, 17, 2006255.
B. C. Gates, M. Flytzani-Stephanopoulos, D. A. Dixon, A. Katz, Catal. Sci. Technol. 2017, 7, 4259.
J. Jones, H. Xiong, A. T. DeLaRiva, E. J. Peterson, H. Pham, S. R. Challa, G. Qi, S. Oh, M. H. Wiebenga, X. I. Pereira Hernández, Y. Wang, A. K. Datye, Science 2016, 353, 150.
J. A. Farmer, C. T. Campbell, Science 2010, 329, 933.
J. Xing, H. B. Jiang, J. F. Chen, Y. H. Li, L. Wu, S. Yang, L. R. Zheng, H. F. Wang, P. Hu, H. J. Zhao, H. G. Yang, J. Mater. Chem. A 2013, 1, 15258.
S. Hejazi, S. Mohajernia, B. Osuagwu, G. Zoppellaro, P. Andryskova, O. Tomanec, S. Kment, R. Zbořil, P. Schmuki, Adv. Mater. 2020, 32, 1908505.
U. Lačnjevac, R. Vasilić, A. Dobrota, S. Đurđić, O. Tomanec, R. Zbořil, S. Mohajernia, N. T. Nguyen, N. Skorodumova, D. Manojlović, N. Elezović, I. Pašti, P. Schmuki, J. Mater. Chem. A 2020, 8, 22773.
X. Zhou, I. Hwang, O. Tomanec, D. Fehn, A. Mazare, R. Zbořil, M. Karsten, P. Schmuki, Adv. Funct. Mater. 2021, 31, 2102843.
N. T. Nguyen, M. Altomare, J. E. Yoo, N. Taccardi, P. Schmuki, Adv. Energy Mater. 2016, 6, 1501926.
P. Skeldon, G. E. Thompson, S. J. Garcia-Vergara, L. Iglesias-Rubianes, C. E. Blanco-Pinzon, Electrochem. Solid-State Lett. 2006, 9, B47.
K. R. Hebert, S. P. Albu, I. Paramasivam, P. Schmuki, Nat. Mater. 2011, 11, 162.
S. P. Albu, H. Tsuchiya, S. Fujimoto, P. Schmuki, Eur. J. Inorg. Chem. 2010, 2010, 4351.
N. Liu, C. Schneider, D. Freitag, M. Hartmann, U. Venkatesan, J. Müller, E. Spiecker, P. Schmuki, Nano Lett. 2014, 14, 3309.
S. Mohajernia, P. Andryskova, G. Zoppellaro, S. Hejazi, S. Kment, R. Zboril, J. Schmidt, P. Schmuki, J. Mater. Chem. A 2020, 8, 1432.
N. Liu, H. G. Steinrück, A. Osvet, Y. Yang, P. Schmuki, Appl. Phys. Lett. 2017, 110, 072102.
X. Zhou, E. Wierzbicka, N. Liu, P. Schmuki, Chem. Commun. 2019, 55, 533.
D. C. Hurum, A. G. Agrios, K. A. Gray, T. Rajh, M. C. Thurnauer, J. Phys. Chem. B 2003, 107, 4545.
A. Tighineanu, T. Ruff, S. Albu, R. Hahn, P. Schmuki, Chem. Phys. Lett. 2010, 494, 260.
J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, J. Phys. Chem. C 2007, 111, 693.
X. Wang, Z. Feng, J. Shi, G. Jia, S. Shen, J. Zhou, C. Li, Phys. Chem. Chem. Phys. 2010, 12, 7083.
J. N. Hansen, H. Prats, K. K. Toudahl, N. Mørch Secher, K. Chan, J. Kibsgaard, I. Chorkendorff, ACS Energy Lett. 2021, 6, 1175.
N. T. Nguyen, J. Yoo, M. Altomare, P. Schmuki, Chem. Commun. 2014, 50, 9653.
K. Yliniemi, N. T. Nguyen, S. Mohajernia, N. Liu, B. P. Wilson, P. Schmuki, M. Lundström, J. Cleaner Prod. 2018, 201, 39.
N. Serpone, A. Salinaro, A. Emeline, V. Ryabchuk, J. Photochem. Photobiol., A 2000, 130, 83.
Pd single atoms on g-C3N4 photocatalysts: minimum loading for maximum activity
Single Atom Cocatalysts in Photocatalysis
Pt Single Atoms Loaded on Thin-Layer TiO2 Electrodes: Electrochemical and Photocatalytic Features