Pt Single Atoms Loaded on Thin-Layer TiO2 Electrodes: Electrochemical and Photocatalytic Features
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/15_003/0000416
European Regional Development Fund
Projectnumber431791331
Deutsche Forschungsgemeinschaft (DFG)
PubMed
39155415
PubMed Central
PMC11579980
DOI
10.1002/smll.202404064
Knihovny.cz E-resources
- Keywords
- Pt Single atom, anatase thin film electrode, electrocatalytic hydrogen evolution, graphene, photocatalytic hydrogen evolution,
- Publication type
- Journal Article MeSH
Recently, the use of Pt in the form of single atoms (SA) has attracted considerable attention to promote the cathodic hydrogen production reaction from water in electrochemical or photocatalytic settings. First, produce suitable electrodes by Pt SA deposition on Direct current (DC)-sputter deposited titania (TiO2) layers on graphene-these electrodes allow to characterization of the electrochemical properties of Pt single atoms and their investigation in high-resolution HAADF-STEM. For Pt SAs loaded on TiO2, electrochemical H2 evolution shows only a very small overpotential. Concurrent with the onset of H2 evolution, agglomeration of the Pt SAs to clusters or nanoparticles (NPs) occurs. Potential cycling can be used to control SA agglomeration to variable-size NPs. The electrochemical activity of the electrode is directly related to the SA surface density (up to reaching the activity level of a plain Pt sheet). In contrast, for photocatalytic H2 generation already a minimum SA density is sufficient to reach control by photogenerated charge carriers. In electrochemical and photocatalytic approaches a typical TOF of ≈100-150 H2 molecules per second per site can be reached. Overall, the work illustrates a straightforward approach for reliable electrochemical and photoelectrochemical investigations of SAs and discusses the extraction of critical electrochemical factors of Pt SAs on titania electrodes.
See more in PubMed
Fujishima A., Honda K., Nature 1972, 238, 37. PubMed
Lin Y., Zhou S., Liu X., Sheehan S., Wang D., J. Am. Chem. Soc. 2009, 131, 2772. PubMed
Shankar K., Basham J. I., Allam N. K., Varghese O. K., Mor G. K., Feng X., Paulose M., Seabold J. A., Choi K.‐S., Grimes C. A., J. Phys. Chem. C 2009, 113, 6327.
Wang G., Wang H., Ling Y., Tang Y., Yang X., Fitzmorris R. C., Wang C., Zhang J. Z., Li Y., Nano Lett. 2011, 11, 3026. PubMed
Fujishima A., Zhang X., Tryk D., Surf. Sci. Rep. 2008, 63, 515.
Maeda K., Domen K., J. Phys. Chem. Lett. 2010, 1, 2655.
Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., Chem. Rev. 1995, 95, 69.
Chen X., Mao S. S., Chem. Rev. 2007, 107, 2891. PubMed
Roy P., Berger S., Schmuki P., Angew. Chem., Int. Ed. 2011, 50, 2904. PubMed
Pelaez M., Nolan N. T., Pillai S. C., Seery M. K., Falaras P., Kontos A. G., Dunlop P. S. M., Hamilton J. W. J., Byrne J. A., O'Shea K., Entezari M. H., Dionysiou D. D., Appl. Catal. B 2012, 125, 331.
Paramasivam I., Jha H., Liu N., Schmuki P., Small 2012, 8, 3073. PubMed
Bamwenda G. R., Tsubota S., Nakamura T., Haruta M., J. Photochem. Photobiol. Chem. 1995, 89, 177.
Murdoch M., Waterhouse G. I. N., Nadeem M. A., Metson J. B., Keane M. A., Howe R. F., Llorca J., Idriss H., Nat. Chem. 2011, 3, 489. PubMed
Yu J., Qi L., Jaroniec M., J. Phys. Chem. C 2010, 114, 13118.
Zhou X., Liu N., Schmuki P., ACS Catal. 2017, 7, 3210.
Anpo M., Yamashita H., Ichihashi Y., Fujii Y., Honda M., J. Phys. Chem. B 1997, 101, 2632.
Matsuoka M., Anpo M., J. Photochem. Photobiol. C Photochem. Rev. 2003, 3, 225.
Zhang Q.‐H., Han W.‐D., Hong Y.‐J., Yu J.‐G., Catal. Today 2009, 148, 335.
Feng X., Sloppy J. D., LaTempa T. J., Paulose M., Komarneni S., Bao N., Grimes C. A., J. Mater. Chem. 2011, 21, 13429.
Thang H. V., Pacchioni G., DeRita L., Christopher P., J. Catal. 2018, 367, 104.
Han B., Guo Y., Huang Y., Xi W., Xu J., Luo J., Qi H., Ren Y., Liu X., Qiao B., Zhang T., Angew. Chem., Int. Ed. 2020, 59, 11824. PubMed
Wu Z., Hwang I., Cha G., Qin S., Tomanec O., Badura Z., Kment S., Zboril R., Schmuki P., Small 2022, 18, 2104892. PubMed
Wu S.‐M., Hwang I., Osuagwu B., Will J., Wu Z., Sarma B. B., Pu F.‐F., Wang L.‐Y., Badura Z., Zoppellaro G., Spiecker E., Schmuki P., ACS Catal. 2023, 13, 33.
Qin S., Will J., Kim H., Denisov N., Carl S., Spiecker E., Schmuki P., ACS Energy Lett. 2023, 8, 1209.
Qin S., Denisov N., Will J., Kolařík J., Spiecker E., Schmuki P., Sol. RRL 2022, 6, 2101026.
Denisov N., Qin S., Will J., Vasiljevic B. N., Skorodumova N. V., Pašti I. A., Sarma B. B., Osuagwu B., Yokosawa T., Voss J., Wirth J., Spiecker E., Schmuki P., Adv. Mater. 2023, 35, 2206569. PubMed
Kho Y. K., Iwase A., Teoh W. Y., Mädler L., Kudo A., Amal R., J. Phys. Chem. C 2010, 114, 2821.
Lu Y., Yin W.‐J., Peng K.‐L., Wang K., Hu Q., Selloni A., Chen F.‐R., Liu L.‐M., Sui M.‐L., Nat. Commun. 2018, 9, 2752. PubMed PMC
Xia X., Peng S., Bao Y., Wang Y., Lei B., Wang Z., Huang Z., Gao Y., J. Power Sources 2018, 376, 11.
Schneider J., Bahnemann D. W., J. Phys. Chem. Lett. 2013, 4, 3479.
Li Z., Luo W., Zhang M., Feng J., Zou Z., Energy Environ. Sci. 2013, 6, 347.
Khan M. M., Ansari S. A., Pradhan D., Ansari M. O., Han D. H., Lee J., Cho M. H., J. Mater. Chem. A 2014, 2, 637.
Ito S., Zakeeruddin S. M., Humphry‐Baker R., Liska P., Charvet R., Comte P., Nazeeruddin M. K., Péchy P., Takata M., Miura H., Uchida S., Grätzel M., Adv. Mater. 2006, 18, 1202.
Ronconi C. M., Pereira E. C., J. Appl. Electrochem. 2001, 31, 319.
Chen J., Tao H. B., Liu B., Adv. Energy Mater. 2017, 7, 1700886.
Madian M., Eychmüller A., Giebeler L., Batteries 2018, 4, 7.
Pidluzhna A., Electrochim. Acta 2021, 367, 137569.
Zang W., Lee J., Tieu P., Yan X., Graham G. W., Tran I. C., Wang P., Christopher P., Pan X., Nat. Commun. 2024, 15, 998. PubMed PMC
Speck F. D., Paul M. T. Y., Ruiz‐Zepeda F., Gatalo M., Kim H., Kwon H. C., Mayrhofer K. J. J., Choi M., Choi C. H., Hodnik N., Cherevko S., J. Am. Chem. Soc. 2020, 142, 15496. PubMed
Ayele A. A., Tsai M.‐C., Adam D. B., Awoke Y. A., Huang W.‐H., Chang C.‐Y., Liao S.‐C., Huang P.‐Y., Chen J.‐L., Pao C.‐W., Su W.‐N., Hwang B. J., Appl. Catal. Gen. 2022, 646, 118861.
Fang S., Zhu X., Liu X., Gu J., Liu W., Wang D., Zhang W., Lin Y., Lu J., Wei S., Li Y., Yao T., Nat. Commun. 2020, 11, 1029. PubMed PMC
Gao J. J., Du P., Zhang Q. H., Shen X., Chiang F.‐K., Wen Y. R., Lin X., Liu X. J., Qiu H. J., Electrochim. Acta 2019, 297, 155.
Wang Y., Qin S., Denisov N., Kim H., Bad'ura Z., Sarma B. B., Schmuki P., Adv. Mater. 2023, 35, 2211814. PubMed
Qin S., Denisov N., Sarma B. B., Hwang I., Doronkin D. E., Tomanec O., Kment S., Schmuki P., Adv. Mater. Interfaces 2022, 9, 2200808.
Hejazi S., Mohajernia S., Osuagwu B., Zoppellaro G., Andryskova P., Tomanec O., Kment S., Zbořil R., Schmuki P., Adv. Mater. 2020, 32, 1908505. PubMed
Tafalla D., Salvador P., J. Electroanal. Chem. Interfacial Electrochem. 1989, 270, 285.
Nelson B. P., Candal R., Corn R. M., Anderson M. A., Langmuir 2000, 16, 6094.
Spadavecchia F., Cappelletti G., Ardizzone S., Ceotto M., Falciola L., J. Phys. Chem. C 2011, 115, 6381.
Ge H., Tian H., Zhou Y., Wu S., Liu D., Fu X., Song X.‐M., Shi X., Wang X., Li N., ACS Appl. Mater. Interfaces 2014, 6, 2401. PubMed
Hansen J. N., Prats H., Toudahl K. K., Mørch Secher N., Chan K., Kibsgaard J., Chorkendorff I., ACS Energy Lett. 2021, 6, 1175. PubMed PMC
Kim H., Wang Y., Denisov N., Wu Z., Kment Š., Schmuki P., J. Mater. Sci. 2022, 57, 12960.
Single Atom Cocatalysts in Photocatalysis