Cation Vacancies in Ti-Deficient TiO2 Nanosheets Enable Highly Stable Trapping of Pt Single Atoms for Persistent Photocatalytic Hydrogen Evolution

. 2025 Jul ; 21 (29) : e2502428. [epub] 20250602

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40454871

Grantová podpora
431791331 Deutsche Forschungsgemeinschaft (DFG)
CZ.02.1.01/0.0/0.0/15_003/0000416 European Regional Development Fund
GA CR-EXPRO (23-08019X) Grantová Agentura České Republiky
SAN4Fuel (HORIZON-WIDERA-2021-ACCESS-03-01: 101079384) HORIZON EUROPE European Research Council
CZ.10.03.01/00/22_003/0000048 Research Excellence For Region Sustainability and High-tech Industries
451-03-137/2025-03/200146 Serbian Ministry of Science, Technological Development, and Innovations
F-190 Serbian Academy of Sciences and Art

The stabilization of single-atom catalysts on semiconductor substrates is pivotal for advancing photocatalysis. TiO2, a widely employed photocatalyst, typically stabilizes single atoms at oxygen vacancies-sites that are accessible but prone to agglomeration under illumination. Here, we demonstrate that cation vacancies in Ti-deficient TiO2 nanosheets provide highly stable anchoring sites for Pt single atoms, enabling persistent photocatalytic hydrogen evolution. Ultrathin TiO2 nanosheets with intrinsic Ti4+ vacancies are synthesized via lepidocrocite-type titanate delamination and Pt single atoms are selectively trapped within these vacancies through a simple immersion process. The resulting Pt-decorated nanosheets exhibit superior photocatalytic hydrogen evolution performance, outperforming both Pt nanoparticle-loaded nanosheets and benchmarked Pt single-atom catalysts on P25. Crucially, Pt atoms anchored at Ti4+ vacancies display remarkable resistance to light-induced agglomeration, a key limitation of conventional single-atom photocatalysts. Density functional theory calculations reveal that Pt incorporation into Ti4+ vacancies is highly thermodynamically favorable and optimizes hydrogen adsorption energetics for enhanced catalytic activity. This work highlights the critical role of cation defect engineering in stabilizing single-atom co-catalysts and advancing the efficiency and durability of photocatalytic hydrogen evolution.

Zobrazit více v PubMed

Mitchell S., Vorobyeva E., Pérez‐Ramírez J., Angew. Chem., Int. Ed. 2018, 57, 15316. PubMed

Jia C., Sun Q., Liu R., Mao G., Maschmeyer T., Gooding J. J., Zhang T., Dai L., Zhao C., Adv. Mater. 2024, 36, 2404659. PubMed

Xia B., Zhang Y., Ran J., Jaroniec M., Qiao S. Z., ACS Cent. Sci. 2021, 7, 39. PubMed PMC

Bajada M. A., Liberto G. D., Tosoni S., Ruta V., Mino L., Allasia N., Sivo A., Pacchioni G., Vilé G., Nat. Synth. 2023, 2, 1092.

Chen X., Shen S., Guo L., Mao S. S., Chem. Rev. 2010, 110, 6503. PubMed

Jung H., Song J., Lee S., Lee Y. W., Wi D. H., Goo B. S., Han S. W., J. Mater. Chem. A 2019, 7, 15831.

Lee S. U., Jung H., Wi D. H., Hong J. W., Sung J., Choi S. I., Han S. W., J. Mater. Chem. A 2018, 6, 4068.

Takata T., Jiang J., Sakata Y., Nakabayashi M., Shibata N., Nandal V., Seki K., Hisatomi T., Domen K., Nature 2020, 581, 411. PubMed

Liu J., Li Y., Zhou X., Jiang H., Yang H. G., Li C., J. Mater. Chem. A 2020, 8, 17.

Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y., Chem. Rev. 2020, 120, 12175. PubMed

Yang L., Choi C., Hong S., Liu Z., Zhao Z., Yang M., Shen H., Robertson A. W., Zhang H., Lo T. W. B., Jung Y., Sun Z., Chem. Commun. 2020, 56, 10910. PubMed

Wu S. M., Hwang I., Osuagwu B., Will J., Wu Z., Sarma B. B., Pu F. F., Wang L. Y., Badura Z., Zoppellaro G., Spiecker E., Schmuki P., ACS Catal. 2023, 13, 33.

Wang Y., Qin S., Denisov N., Kim H., Baďura Z., Sarma B. B., Schmuki P., Adv. Mater. 2023, 35, 2211814. PubMed

Kerketta U., Kim H., Denisov N., Schmuki P., Adv. Energy Mater. 2023, 14, 2302998.

Wu S. M., Wu L., Denisov N., Badura Z., Zoppellaro G., Yang X. Y., Schmuki P., J. Am. Chem. Soc. 2024, 146, 16363. PubMed

Han B., Guo Y., Huang Y., Xi W., Xu J., Luo J., Qi H., Ren Y., Liu X., Qiao B., Zhang T., Angew. Chem., Int. Ed. 2020, 59, 11824. PubMed

Qin S., Will J., Kim H., Denisov N., Carl S., Spiecker E., Schmuki P., ACS Energy Lett. 2023, 8, 1209.

Cai S., Wang L., Heng S., Li H., Bai Y., Dang D., Wang Q., Zhang P., He C., J. Phys. Chem. C 2020, 124, 24566.

Pan L., Wang J., Lu F., Liu Q., Gao Y., Wang Y., Jiang J., Sun C., Wang J., Wang X., Angew. Chem., Int. Ed. 2023, 62, 202216835. PubMed

Lu F., Wang J., Chai S., Wang Y., Yao Y., Wang X., Angew. Chem., Int. Ed. 2025, 64, 202414719. PubMed

Wu Z., Hwang I., Cha G., Qin S., Tomanec O., Badura Z., Kment S., Zboril R., Schmuki P., Small 2021, 18, 2104892. PubMed

Denisov N., Qin S., Will J., Vasiljevic B. N., Skorodumova N. V., Pašti I. A., Sarma B. B., Osuagwu B., Yokosawa T., Voss J., Wirth J., Spiecker E., Schmuki P., Adv. Mater. 2023, 35, 2206569. PubMed

Wang Y., Denisov N., Qin S., Gonçalves D. S., Kim H., Sarma B. B., Schmuki P., Adv. Mater. 2024, 36, 2400626. PubMed

Sasaki T., Watanabe M., Hashizume H., Yamada H., Nakazawa H., J. Am. Chem. Soc. 1996, 118, 8329.

Sasaki T., Kooli F., Iida M., Michiue Y., Takenouchi S., Yajima Y., Izumi F., Chakoumakos B. C., Watanabe M., Chem. Mater. 1998, 10, 4123.

Ohwada M., Kimoto K., Mizoguchi T., Ebina Y., Sasaki T., Sci. Rep. 2013, 3, 2801. PubMed PMC

Tanaka T., Ebina Y., Takada K., Kurashima K., Sasaki T., Chem. Mater. 2003, 15, 3564.

Cha G., Weiß S., Thanner J., Rosenfeldt S., Dudko V., Uhlig F., Stevenson M., Pietsch I., Siegel R., Friedrich D., Bensch W., Senker J., Sakai N., Sasaki T., Breu J., Chem. Mater. 2023, 35, 7208.

Butz B., Dolle C., Niekiel F., Weber K., Waldmann D., Weber H. B., Meyer B., Spiecker E., Nature 2014, 505, 533. PubMed

Scanlon D. O., Dunnill C. W., Buckeridge J., Shevlin S. A., Logsdail A. J., Woodley S. M., Catlow C. R. A., Powell M. J., Palgrave R. G., Parkin I. P., Watson G. W., Keal T. W., Sherwood P., Walsh A., Sokol A. A., Nat. Mater. 2013, 12, 798. PubMed

Bavykin D. V., Walsh F. C., Titanate and Titania Nanotubes: Synthesis, Properties and Applications, Royal Society of Chemistry, London: 2009.

Monticone S., Tufeu R., Kanaeva A. V., Scolan E., Sanchez C., Appl. Surf. Sci. 2000, 162, 565.

Sato H., Ono K., Sasaki T., Yamagishi A., J. Phys. Chem. B 2003, 107, 9824.

Na‐Phattalung S., Smith M. F., Kim K., Du M. H., Wei S. H., Zhang S. B., Limpijumnong S., Phys. Rev. B 2006, 73, 125205.

Wang S., Pan L., Song J. J., Mi W., Zou J. J., Wang L., Zhang X., J. Am. Chem. Soc. 2015, 137, 2975. PubMed

Pan L., Ai M., Huang C., Yin L., Liu X., Zhang R., Wang S., Jiang Z., Zhang X., Zou J. J., Mi W., Nat. Commun. 2020, 11, 418. PubMed PMC

Van Vleck J. H., Phys. Rev. 1948, 74, 1168.

Naldoni A., Altomare M., Zoppellaro G., Liu N., Kment Š., Zboril R., Schmuki P., ACS Catal. 2019, 9, 345. PubMed PMC

Kittel C., Introduction to Solid State Physics, Wiley, Hoboken, New Jersey, USA, 2005.

Dobrota A. S., Skorodumova N. V., Mentus S. V., Pašti I. A., Electrochim. Acta 2022, 412, 140155.

Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., Stimming U., J. Electrochem. Soc. 2005, 152, J23.

Kresse G., Hafner J., Phys. Rev. B 1993, 47, 558. PubMed

Kresse G., Furthmüller J., Comput. Mater. Sci. 1996, 6, 15.

Kresse G., Furthmüller J., Phys. Rev. B 1996, 54, 11169. PubMed

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed

Blöchl P. E., Phys. Rev. B 1994, 50, 17953. PubMed

Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P., Phys. Rev. B 1998, 57, 1505.

Shen Y., Ren C., Zheng L., Xu X., Long R., Zhang W., Yang Y., Zhang Y., Yao Y., Chi H., Wang J., Shen Q., Xiong Y., Zou Z., Zhou Y., Nat. Commun. 2023, 14, 1117. PubMed PMC

Nosé S., Prog. Theor. Phys. Suppl. 1991, 103, 1.

Hoover W. G., Phys. Rev. A 1985, 31, 1695. PubMed

Henkelman G., Uberuaga B. P., Jónsson H., J. Chem. Phys. 2000, 113, 9901.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...