Cation Vacancies in Ti-Deficient TiO2 Nanosheets Enable Highly Stable Trapping of Pt Single Atoms for Persistent Photocatalytic Hydrogen Evolution
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
431791331
Deutsche Forschungsgemeinschaft (DFG)
CZ.02.1.01/0.0/0.0/15_003/0000416
European Regional Development Fund
GA CR-EXPRO (23-08019X)
Grantová Agentura České Republiky
SAN4Fuel (HORIZON-WIDERA-2021-ACCESS-03-01: 101079384)
HORIZON EUROPE European Research Council
CZ.10.03.01/00/22_003/0000048
Research Excellence For Region Sustainability and High-tech Industries
451-03-137/2025-03/200146
Serbian Ministry of Science, Technological Development, and Innovations
F-190
Serbian Academy of Sciences and Art
PubMed
40454871
PubMed Central
PMC12288771
DOI
10.1002/smll.202502428
Knihovny.cz E-zdroje
- Klíčová slova
- Pt single atom, TiO2 nanosheet, cation vacancy, photocatalytic hydrogen evolution,
- Publikační typ
- časopisecké články MeSH
The stabilization of single-atom catalysts on semiconductor substrates is pivotal for advancing photocatalysis. TiO2, a widely employed photocatalyst, typically stabilizes single atoms at oxygen vacancies-sites that are accessible but prone to agglomeration under illumination. Here, we demonstrate that cation vacancies in Ti-deficient TiO2 nanosheets provide highly stable anchoring sites for Pt single atoms, enabling persistent photocatalytic hydrogen evolution. Ultrathin TiO2 nanosheets with intrinsic Ti4+ vacancies are synthesized via lepidocrocite-type titanate delamination and Pt single atoms are selectively trapped within these vacancies through a simple immersion process. The resulting Pt-decorated nanosheets exhibit superior photocatalytic hydrogen evolution performance, outperforming both Pt nanoparticle-loaded nanosheets and benchmarked Pt single-atom catalysts on P25. Crucially, Pt atoms anchored at Ti4+ vacancies display remarkable resistance to light-induced agglomeration, a key limitation of conventional single-atom photocatalysts. Density functional theory calculations reveal that Pt incorporation into Ti4+ vacancies is highly thermodynamically favorable and optimizes hydrogen adsorption energetics for enhanced catalytic activity. This work highlights the critical role of cation defect engineering in stabilizing single-atom co-catalysts and advancing the efficiency and durability of photocatalytic hydrogen evolution.
Department of Chemistry Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
Serbian Academy of Sciences and Art Kneza Mihaila 35 Belgrade 11000 Serbia
University of Belgrade Faculty of Physical Chemistry Studentski trg 12 16 Belgrade 11000 Serbia
Zobrazit více v PubMed
Mitchell S., Vorobyeva E., Pérez‐Ramírez J., Angew. Chem., Int. Ed. 2018, 57, 15316. PubMed
Jia C., Sun Q., Liu R., Mao G., Maschmeyer T., Gooding J. J., Zhang T., Dai L., Zhao C., Adv. Mater. 2024, 36, 2404659. PubMed
Xia B., Zhang Y., Ran J., Jaroniec M., Qiao S. Z., ACS Cent. Sci. 2021, 7, 39. PubMed PMC
Bajada M. A., Liberto G. D., Tosoni S., Ruta V., Mino L., Allasia N., Sivo A., Pacchioni G., Vilé G., Nat. Synth. 2023, 2, 1092.
Chen X., Shen S., Guo L., Mao S. S., Chem. Rev. 2010, 110, 6503. PubMed
Jung H., Song J., Lee S., Lee Y. W., Wi D. H., Goo B. S., Han S. W., J. Mater. Chem. A 2019, 7, 15831.
Lee S. U., Jung H., Wi D. H., Hong J. W., Sung J., Choi S. I., Han S. W., J. Mater. Chem. A 2018, 6, 4068.
Takata T., Jiang J., Sakata Y., Nakabayashi M., Shibata N., Nandal V., Seki K., Hisatomi T., Domen K., Nature 2020, 581, 411. PubMed
Liu J., Li Y., Zhou X., Jiang H., Yang H. G., Li C., J. Mater. Chem. A 2020, 8, 17.
Gao C., Low J., Long R., Kong T., Zhu J., Xiong Y., Chem. Rev. 2020, 120, 12175. PubMed
Yang L., Choi C., Hong S., Liu Z., Zhao Z., Yang M., Shen H., Robertson A. W., Zhang H., Lo T. W. B., Jung Y., Sun Z., Chem. Commun. 2020, 56, 10910. PubMed
Wu S. M., Hwang I., Osuagwu B., Will J., Wu Z., Sarma B. B., Pu F. F., Wang L. Y., Badura Z., Zoppellaro G., Spiecker E., Schmuki P., ACS Catal. 2023, 13, 33.
Wang Y., Qin S., Denisov N., Kim H., Baďura Z., Sarma B. B., Schmuki P., Adv. Mater. 2023, 35, 2211814. PubMed
Kerketta U., Kim H., Denisov N., Schmuki P., Adv. Energy Mater. 2023, 14, 2302998.
Wu S. M., Wu L., Denisov N., Badura Z., Zoppellaro G., Yang X. Y., Schmuki P., J. Am. Chem. Soc. 2024, 146, 16363. PubMed
Han B., Guo Y., Huang Y., Xi W., Xu J., Luo J., Qi H., Ren Y., Liu X., Qiao B., Zhang T., Angew. Chem., Int. Ed. 2020, 59, 11824. PubMed
Qin S., Will J., Kim H., Denisov N., Carl S., Spiecker E., Schmuki P., ACS Energy Lett. 2023, 8, 1209.
Cai S., Wang L., Heng S., Li H., Bai Y., Dang D., Wang Q., Zhang P., He C., J. Phys. Chem. C 2020, 124, 24566.
Pan L., Wang J., Lu F., Liu Q., Gao Y., Wang Y., Jiang J., Sun C., Wang J., Wang X., Angew. Chem., Int. Ed. 2023, 62, 202216835. PubMed
Lu F., Wang J., Chai S., Wang Y., Yao Y., Wang X., Angew. Chem., Int. Ed. 2025, 64, 202414719. PubMed
Wu Z., Hwang I., Cha G., Qin S., Tomanec O., Badura Z., Kment S., Zboril R., Schmuki P., Small 2021, 18, 2104892. PubMed
Denisov N., Qin S., Will J., Vasiljevic B. N., Skorodumova N. V., Pašti I. A., Sarma B. B., Osuagwu B., Yokosawa T., Voss J., Wirth J., Spiecker E., Schmuki P., Adv. Mater. 2023, 35, 2206569. PubMed
Wang Y., Denisov N., Qin S., Gonçalves D. S., Kim H., Sarma B. B., Schmuki P., Adv. Mater. 2024, 36, 2400626. PubMed
Sasaki T., Watanabe M., Hashizume H., Yamada H., Nakazawa H., J. Am. Chem. Soc. 1996, 118, 8329.
Sasaki T., Kooli F., Iida M., Michiue Y., Takenouchi S., Yajima Y., Izumi F., Chakoumakos B. C., Watanabe M., Chem. Mater. 1998, 10, 4123.
Ohwada M., Kimoto K., Mizoguchi T., Ebina Y., Sasaki T., Sci. Rep. 2013, 3, 2801. PubMed PMC
Tanaka T., Ebina Y., Takada K., Kurashima K., Sasaki T., Chem. Mater. 2003, 15, 3564.
Cha G., Weiß S., Thanner J., Rosenfeldt S., Dudko V., Uhlig F., Stevenson M., Pietsch I., Siegel R., Friedrich D., Bensch W., Senker J., Sakai N., Sasaki T., Breu J., Chem. Mater. 2023, 35, 7208.
Butz B., Dolle C., Niekiel F., Weber K., Waldmann D., Weber H. B., Meyer B., Spiecker E., Nature 2014, 505, 533. PubMed
Scanlon D. O., Dunnill C. W., Buckeridge J., Shevlin S. A., Logsdail A. J., Woodley S. M., Catlow C. R. A., Powell M. J., Palgrave R. G., Parkin I. P., Watson G. W., Keal T. W., Sherwood P., Walsh A., Sokol A. A., Nat. Mater. 2013, 12, 798. PubMed
Bavykin D. V., Walsh F. C., Titanate and Titania Nanotubes: Synthesis, Properties and Applications, Royal Society of Chemistry, London: 2009.
Monticone S., Tufeu R., Kanaeva A. V., Scolan E., Sanchez C., Appl. Surf. Sci. 2000, 162, 565.
Sato H., Ono K., Sasaki T., Yamagishi A., J. Phys. Chem. B 2003, 107, 9824.
Na‐Phattalung S., Smith M. F., Kim K., Du M. H., Wei S. H., Zhang S. B., Limpijumnong S., Phys. Rev. B 2006, 73, 125205.
Wang S., Pan L., Song J. J., Mi W., Zou J. J., Wang L., Zhang X., J. Am. Chem. Soc. 2015, 137, 2975. PubMed
Pan L., Ai M., Huang C., Yin L., Liu X., Zhang R., Wang S., Jiang Z., Zhang X., Zou J. J., Mi W., Nat. Commun. 2020, 11, 418. PubMed PMC
Van Vleck J. H., Phys. Rev. 1948, 74, 1168.
Naldoni A., Altomare M., Zoppellaro G., Liu N., Kment Š., Zboril R., Schmuki P., ACS Catal. 2019, 9, 345. PubMed PMC
Kittel C., Introduction to Solid State Physics, Wiley, Hoboken, New Jersey, USA, 2005.
Dobrota A. S., Skorodumova N. V., Mentus S. V., Pašti I. A., Electrochim. Acta 2022, 412, 140155.
Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., Stimming U., J. Electrochem. Soc. 2005, 152, J23.
Kresse G., Hafner J., Phys. Rev. B 1993, 47, 558. PubMed
Kresse G., Furthmüller J., Comput. Mater. Sci. 1996, 6, 15.
Kresse G., Furthmüller J., Phys. Rev. B 1996, 54, 11169. PubMed
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed
Blöchl P. E., Phys. Rev. B 1994, 50, 17953. PubMed
Dudarev S. L., Botton G. A., Savrasov S. Y., Humphreys C. J., Sutton A. P., Phys. Rev. B 1998, 57, 1505.
Shen Y., Ren C., Zheng L., Xu X., Long R., Zhang W., Yang Y., Zhang Y., Yao Y., Chi H., Wang J., Shen Q., Xiong Y., Zou Z., Zhou Y., Nat. Commun. 2023, 14, 1117. PubMed PMC
Nosé S., Prog. Theor. Phys. Suppl. 1991, 103, 1.
Hoover W. G., Phys. Rev. A 1985, 31, 1695. PubMed
Henkelman G., Uberuaga B. P., Jónsson H., J. Chem. Phys. 2000, 113, 9901.