Validation and verification of predictive salivary biomarkers for oral health

. 2021 Mar 19 ; 11 (1) : 6406. [epub] 20210319

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33742017
Odkazy

PubMed 33742017
PubMed Central PMC7979790
DOI 10.1038/s41598-021-85120-w
PII: 10.1038/s41598-021-85120-w
Knihovny.cz E-zdroje

Oral health is important not only due to the diseases emerging in the oral cavity but also due to the direct relation to systemic health. Thus, early and accurate characterization of the oral health status is of utmost importance. There are several salivary biomarkers as candidates for gingivitis and periodontitis, which are major oral health threats, affecting the gums. These need to be verified and validated for their potential use as differentiators of health, gingivitis and periodontitis status, before they are translated to chair-side for diagnostics and personalized monitoring. We aimed to measure 10 candidates using high sensitivity ELISAs in a well-controlled cohort of 127 individuals from three groups: periodontitis (60), gingivitis (31) and healthy (36). The statistical approaches included univariate statistical tests, receiver operating characteristic curves (ROC) with the corresponding Area Under the Curve (AUC) and Classification and Regression Tree (CART) analysis. The main outcomes were that the combination of multiple biomarker assays, rather than the use of single ones, can offer a predictive accuracy of > 90% for gingivitis versus health groups; and 100% for periodontitis versus health and periodontitis versus gingivitis groups. Furthermore, ratios of biomarkers MMP-8, MMP-9 and TIMP-1 were also proven to be powerful differentiating values compared to the single biomarkers.

Zobrazit více v PubMed

Hajishengallis G, Lamont RJ. Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral Microbiol. 2012;27:409–419. doi: 10.1111/j.2041-1014.2012.00663.x. PubMed DOI PMC

Bostanci N, Bao K, Greenwood D, Silbereisen A, Belibasakis GN. Periodontal disease: from the lenses of light microscopy to the specs of proteomics and next-generation sequencing. Adv. Clin. Chem. 2019;93:263–290. doi: 10.1016/bs.acc.2019.07.006. PubMed DOI

Bostanci N, et al. Targeted proteomics guided by label-free quantitative proteome analysis in saliva reveal transition signatures from health to periodontal disease. Mol. Cell Proteomics. 2018;17:1392–1409. doi: 10.1074/mcp.RA118.000718. PubMed DOI PMC

Bostanci, N. & Belibasakis, G. N. Gingival crevicular fluid and its immune mediators in the proteomic era. Periodontol. 200076, 68–84. 10.1111/prd.12154 (2018). PubMed

Giannobile, W. V. et al. Saliva as a diagnostic tool for periodontal disease: current state and future directions. Periodontol. 200050, 52–64. 10.1111/j.1600-0757.2008.00288.x (2009). PubMed PMC

Scannapieco FA. Saliva-bacterium interactions in oral microbial ecology. Crit. Rev. Oral Biol. Med. 1994;5:203–248. doi: 10.1177/10454411940050030201. PubMed DOI

Sexton WM, et al. Salivary biomarkers of periodontal disease in response to treatment. J. Clin. Periodontol. 2011;38:434–441. doi: 10.1111/j.1600-051X.2011.01706.x. PubMed DOI PMC

Grassl N, et al. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Med. 2016;8:44. doi: 10.1186/s13073-016-0293-0. PubMed DOI PMC

Ebersole JL, Nagarajan R, Akers D, Miller CS. Targeted salivary biomarkers for discrimination of periodontal health and disease(s) Front. Cell Infect. Microbiol. 2015;5:62. doi: 10.3389/fcimb.2015.00062. PubMed DOI PMC

Silbereisen A, et al. Label-free quantitative proteomics versus antibody-based assays to measure neutrophil-derived enzymes in saliva. Proteomics Clin. Appl. 2020;14:e1900050. doi: 10.1002/prca.201900050. PubMed DOI

Bostanci N, Bao K. Contribution of proteomics to our understanding of periodontal inflammation. Proteomics. 2017;17:1500518. doi: 10.1002/pmic.201500518. PubMed DOI

Raisanen IT, et al. A point-of-care test of active matrix metalloproteinase-8 predicts triggering receptor expressed on myeloid cells-1 (TREM-1) levels in saliva. J. Periodontol. 2020;91:102–109. doi: 10.1002/JPER.19-0132. PubMed DOI

Persson GR, et al. A multicenter clinical trial of PerioGard in distinguishing between diseased and healthy periodontal sites. (I). Study design, methodology and therapeutic outcome. J. Clin. Periodontol. 1995;22:794–803. doi: 10.1111/j.1600-051x.1995.tb00263.x. PubMed DOI

Hemmings KW, Griffiths GS, Bulman JS. Detection of neutral protease (Periocheck) and BANA hydrolase (Perioscan) compared with traditional clinical methods of diagnosis and monitoring of chronic inflammatory periodontal disease. J. Clin. Periodontol. 1997;24:110–114. doi: 10.1111/j.1600-051x.1997.tb00475.x. PubMed DOI

Kinney JS, et al. Saliva/pathogen biomarker signatures and periodontal disease progression. J. Dent. Res. 2011;90:752–758. doi: 10.1177/0022034511399908. PubMed DOI PMC

Nagarajan R, Al-Sabbagh M, Dawson D, 3rd, Ebersole JL. Integrated biomarker profiling of smokers with periodontitis. J. Clin. Periodontol. 2017;44:238–246. doi: 10.1111/jcpe.12659. PubMed DOI PMC

Liukkonen J, Gursoy UK, Pussinen PJ, Suominen AL, Kononen E. Salivary concentrations of Interleukin (IL)-1beta, IL-17A, and IL-23 vary in relation to periodontal status. J. Periodontol. 2016;87:1484–1491. doi: 10.1902/jop.2016.160146. PubMed DOI

Paulovich AG, Whiteaker JR, Hoofnagle AN, Wang P. The interface between biomarker discovery and clinical validation: The tar pit of the protein biomarker pipeline. Proteomics Clin. Appl. 2008;2:1386–1402. doi: 10.1002/prca.200780174. PubMed DOI PMC

Rifai N, Gillette MA, Carr SA. Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat. Biotechnol. 2006;24:971–983. doi: 10.1038/nbt1235. PubMed DOI

Bostanci N, et al. Salivary proteotypes of gingivitis tolerance and resilience. J. Clin. Periodontol. 2020 doi: 10.1111/jcpe.13358. PubMed DOI PMC

Akcali A, et al. Elevated matrix metalloproteinase-8 in saliva and serum in polycystic ovary syndrome and association with gingival inflammation. Innate Immun. 2015;21:619–625. doi: 10.1177/1753425915572172. PubMed DOI

Sorsa T, et al. Matrix metalloproteinases: contribution to pathogenesis, diagnosis and treatment of periodontal inflammation. Ann. Med. 2006;38:306–321. doi: 10.1080/07853890600800103. PubMed DOI

Anderson L. Six decades searching for meaning in the proteome. J. Proteomics. 2014;107:24–30. doi: 10.1016/j.jprot.2014.03.005. PubMed DOI

Silbereisen A, et al. Regulation of PGLYRP1 and TREM-1 during progression and resolution of gingival inflammation. JDR Clin. Trans. Res. 2019;4:352–359. doi: 10.1177/2380084419844937. PubMed DOI

Jaedicke KM, Taylor JJ, Preshaw PM. Validation and quality control of ELISAs for the use with human saliva samples. J. Immunol. Methods. 2012;377:62–65. doi: 10.1016/j.jim.2012.01.010. PubMed DOI

Jordan R, Visweswaran S, Gopalakrishnan V. Semi-automated literature mining to identify putative biomarkers of disease from multiple biofluids. J. Clin. Bioinforma. 2014;4:13. doi: 10.1186/2043-9113-4-13. PubMed DOI PMC

Belibasakis GN, Thurnheer T, Bostanci N. Interleukin-8 responses of multi-layer gingival epithelia to subgingival biofilms: role of the "red complex" species. PLoS ONE. 2013;8:e81581. doi: 10.1371/journal.pone.0081581. PubMed DOI PMC

Lee A, et al. Bacterial and salivary biomarkers predict the gingival inflammatory profile. J. Periodontol. 2012;83:79–89. doi: 10.1902/jop.2011.110060. PubMed DOI

Schipper RG, Silletti E, Vingerhoeds MH. Saliva as research material: biochemical, physicochemical and practical aspects. Arch. Oral Biol. 2007;52:1114–1135. doi: 10.1016/j.archoralbio.2007.06.009. PubMed DOI

Bikker FJ, et al. Salivary total protease activity based on a broad-spectrum fluorescence resonance energy transfer approach to monitor induction and resolution of gingival inflammation. Mol. Diagn. Ther. 2019;23:667–676. doi: 10.1007/s40291-019-00421-1. PubMed DOI PMC

Bostanci N, et al. Secretome of gingival epithelium in response to subgingival biofilms. Mol. Oral Microbiol. 2015;30:323–335. doi: 10.1111/omi.12096. PubMed DOI

Costa PP, et al. Salivary interleukin-6, matrix metalloproteinase-8, and osteoprotegerin in patients with periodontitis and diabetes. J. Periodontol. 2010;81:384–391. doi: 10.1902/jop.2009.090510. PubMed DOI

Bostanci N, et al. Differential expression of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin mRNA in periodontal diseases. J. Periodontal Res. 2007;42:287–293. doi: 10.1111/j.1600-0765.2006.00946.x. PubMed DOI

Bostanci N, Saygan B, Emingil G, Atilla G, Belibasakis GN. Effect of periodontal treatment on receptor activator of NF-kappaB ligand and osteoprotegerin levels and relative ratio in gingival crevicular fluid. J. Clin. Periodontol. 2011;38:428–433. doi: 10.1111/j.1600-051X.2011.01701.x. PubMed DOI

Akcali A, et al. Gingival inflammation and salivary or serum granulocyte-secreted enzymes in patients with polycystic ovary syndrome. J. Periodontol. 2017;88:1145–1152. doi: 10.1902/jop.2017.170043. PubMed DOI

Hassan MN, et al. Annexin-1 as a salivary biomarker for gingivitis during pregnancy. J. Periodontol. 2018;89:875–882. doi: 10.1002/JPER.17-0557. PubMed DOI

Sorsa, T. et al. Analysis of matrix metalloproteinases, especially MMP-8, in gingival creviclular fluid, mouthrinse and saliva for monitoring periodontal diseases. Periodontol. 200070, 142–163. 10.1111/prd.12101 (2016). PubMed

Nascimento GG, et al. Salivary levels of MPO, MMP-8 and TIMP-1 are associated with gingival inflammation response patterns during experimental gingivitis. Cytokine. 2019;115:135–141. doi: 10.1016/j.cyto.2018.12.002. PubMed DOI

Morelli T, et al. Salivary biomarkers in a biofilm overgrowth model. J. Periodontol. 2014;85:1770–1778. doi: 10.1902/jop.2014.140180. PubMed DOI PMC

Fingleton, B. Matrix metalloproteinases as regulators of inflammatory processes. Biochim. Biophys. Acta Mol. Cell Res.1864 2036–2042. 10.1016/j.bbamcr.2017.05.010 (2017). PubMed

Makela M, Salo T, Uitto VJ, Larjava H. Matrix metalloproteinases (MMP-2 and MMP-9) of the oral cavity: cellular origin and relationship to periodontal status. J. Dent. Res. 1994;73:1397–1406. doi: 10.1177/00220345940730080201. PubMed DOI

Yilmaz M, et al. Pathogen profile and MMP-3 levels in areas with varied attachment loss in generalized aggressive and chronic periodontitis. Cent. Eur. J. Immunol. 2019;44:440–446. doi: 10.5114/ceji.2019.92806. PubMed DOI PMC

Muller R, Mockel M. Logistic regression and CART in the analysis of multimarker studies. Clin. Chim. Acta. 2008;394:1–6. doi: 10.1016/j.cca.2008.04.007. PubMed DOI

Kim YG, et al. Transcriptome sequencing of gingival biopsies from chronic periodontitis patients reveals novel gene expression and splicing patterns. Hum. Genomics. 2016;10:28. doi: 10.1186/s40246-016-0084-0. PubMed DOI PMC

Bostanci N, et al. Interleukin-1alpha stimulation in monocytes by periodontal bacteria: antagonistic effects of Porphyromonas gingivalis. Oral Microbiol. Immunol. 2007;22:52–60. doi: 10.1111/j.1399-302X.2007.00322.x. PubMed DOI

Ebersole JL, et al. Patterns of salivary analytes provide diagnostic capacity for distinguishing chronic adult periodontitis from health. J. Clin. Immunol. 2013;33:271–279. doi: 10.1007/s10875-012-9771-3. PubMed DOI PMC

Syndergaard B, et al. Salivary biomarkers associated with gingivitis and response to therapy. J. Periodontol. 2014;85:e295–303. doi: 10.1902/jop.2014.130696. PubMed DOI PMC

Bostanci N, Ozturk VO, Emingil G, Belibasakis GN. Elevated oral and systemic levels of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in periodontitis. J. Dent. Res. 2013;92:161–165. doi: 10.1177/0022034512470691. PubMed DOI

Ren L, Jiang ZQ, Fu Y, Leung WK, Jin L. The interplay of lipopolysaccharide-binding protein and cytokines in periodontal health and disease. J. Clin. Periodontol. 2009;36:619–626. doi: 10.1111/j.1600-051X.2009.01436.x. PubMed DOI

Ding PH, Jin LJ. The role of lipopolysaccharide-binding protein in innate immunity: a revisit and its relevance to oral/periodontal health. J. Periodontal Res. 2014;49:1–9. doi: 10.1111/jre.12081. PubMed DOI

Ohshima M, et al. Hepatocyte growth factor in saliva: a possible marker for periodontal disease status. J. Oral Sci. 2002;44:35–39. doi: 10.2334/josnusd.44.35. PubMed DOI

Lonn J, et al. High concentration but low activity of hepatocyte growth factor in periodontitis. J. Periodontol. 2014;85:113–122. doi: 10.1902/jop.2013.130003. PubMed DOI

McDermott JE, et al. Challenges in biomarker discovery: combining expert insights with statistical analysis of complex omics data. Expert Opin. Med. Diagn. 2013;7:37–51. doi: 10.1517/17530059.2012.718329. PubMed DOI PMC

Hilden J. The area under the ROC curve and its competitors. Med. Decis. Mak. 1991;11:95–101. doi: 10.1177/0272989X9101100204. PubMed DOI

Steyerberg EW, et al. Assessing the incremental value of diagnostic and prognostic markers: a review and illustration. Eur. J. Clin. Investig. 2012;42:216–228. doi: 10.1111/j.1365-2362.2011.02562.x. PubMed DOI PMC

D'Aiuto F, Orlandi M, Gunsolley JC. Evidence that periodontal treatment improves biomarkers and CVD outcomes. J. Periodontol. 2013;84:S85–S105. doi: 10.1902/jop.2013.134007. PubMed DOI

Nylund KM, et al. Association of the salivary triggering receptor expressed on myeloid cells/its ligand peptidoglycan recognition protein 1 axis with oral inflammation in kidney disease. J. Periodontol. 2018;89:117–129. doi: 10.1902/jop.2017.170218. PubMed DOI

Mitsakakis K, et al. Chair/bedside diagnosis of oral and respiratory tract infections, and identification of antibiotic resistances for personalised monitoring and treatment. Stud. Health Technol. Inform. 2016;224:61–66. PubMed

Taylor JJ, et al. A prototype antibody-based biosensor for measurement of salivary MMP-8 in periodontitis using surface acoustic wave technology. Sci. Rep. 2019;9:11034. doi: 10.1038/s41598-019-47513-w. PubMed DOI PMC

von Elm E, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int. J. Surg. 2014;12:1495–1499. doi: 10.1016/j.ijsu.2014.07.013. PubMed DOI

Afacan B, Ozturk VO, Emingil G, Kose T, Bostanci N. Alarm anti-protease trappin-2 negatively correlates with proinflammatory cytokines in patients with periodontitis. J. Periodontol. 2018;89:58–66. doi: 10.1902/jop.2017.170245. PubMed DOI

Armitage GC. Development of a classification system for periodontal diseases and conditions. Ann. Periodontol. 1999;4:1–6. doi: 10.1902/annals.1999.4.1.1. PubMed DOI

Hassan SH, El-Refai MI, Ghallab NA, Kasem RF, Shaker OG. Effect of periodontal surgery on osteoprotegerin levels in gingival crevicular fluid, saliva, and gingival tissues of chronic periodontitis patients. Dis. Markers. 2015;2015:341259. doi: 10.1155/2015/341259. PubMed DOI PMC

Costantini E, et al. Evaluation of salivary cytokines and vitamin D levels in periodontopathic patients. Int. J. Mol. Sci. 2020;21:2669. doi: 10.3390/ijms21082669. PubMed DOI PMC

Riis JL, et al. Adiponectin: Serum-saliva associations and relations with oral and systemic markers of inflammation. Peptides. 2017;91:58–64. doi: 10.1016/j.peptides.2017.03.006. PubMed DOI

Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/bf03193146. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...