ImmunoDisk-A Fully Automated Bead-Based Immunoassay Cartridge with All Reagents Pre-Stored

. 2022 Jun 14 ; 12 (6) : . [epub] 20220614

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35735560

Grantová podpora
633780 European Commission
E!113595 Eurostars, managed by the Federal Ministry of Education & Research (BMBF)

In this paper, we present the ImmunoDisk, a fully automated sample-to-answer centrifugal microfluidic cartridge, integrating a heterogeneous, wash-free, magnetic- and fluorescent bead-based immunoassay (bound-free phase detection immunoassay/BFPD-IA). The BFPD-IA allows the implementation of a simple fluidic structure, where the assay incubation, bead separation and detection are performed in the same chamber. The system was characterized using a C-reactive protein (CRP) competitive immunoassay. A parametric investigation on air drying of protein-coupled beads for pre-storage at room temperature is presented. The key parameters were buffer composition, drying temperature and duration. A protocol for drying two different types of protein-coupled beads with the same temperature and duration using different drying buffers is presented. The sample-to-answer workflow was demonstrated measuring CRP in 5 µL of human serum, without prior dilution, utilizing only one incubation step, in 20 min turnaround time, in the clinically relevant concentration range of 15-115 mg/L. A reproducibility assessment over three disk batches revealed an average signal coefficient of variation (CV) of 5.8 ± 1.3%. A CRP certified reference material was used for method verification with a concentration CV of 8.6%. Our results encourage future testing of the CRP-ImmunoDisk in clinical studies and its point-of-care implementation in many diagnostic applications.

Zobrazit více v PubMed

Luong J., Vashist S.K., editors. Handbook of Immunoassay Technologies: Approaches, Performances, and Applications. Academic Press an imprint of Elsevier; London, UK: 2018.

Gug I.T., Tertis M., Hosu O., Cristea C. Salivary biomarkers detection: Analytical and immunological methods overview. TrAC-Trends Anal. Chem. 2019;113:301–316. doi: 10.1016/j.trac.2019.02.020. DOI

Silbereisen A., Alassiri S., Bao K., Grossmann J., Nanni P., Fernandez C., Tervahartiala T., Nascimento G.G., Belibasakis G.N., Heikkinen A.-M., et al. Label-Free Quantitative Proteomics versus Antibody-Based Assays to Measure Neutrophil-Derived Enzymes in Saliva. Proteom. Clin. Appl. 2020;14:e1900050. doi: 10.1002/prca.201900050. PubMed DOI

Hnasko R. ELISA: Methods and Protocols. Humana Press; New York, NY, USA: Heidelberg, Germany: Dordrecht, The Netherlands: London, UK: 2015.

O’Kennedy R., Murphy C. Immunoassays: Development, Applications and Future Trends. Pan Stanford Publishing; Milton, GA, USA: 2017.

Bostanci N., Mitsakakis K., Afacan B., Bao K., Johannsen B., Baumgartner D., Müller L., Kotolová H., Emingil G., Karpíšek M. Validation and verification of predictive salivary biomarkers for oral health. Sci. Rep. 2021;11:6406. doi: 10.1038/s41598-021-85120-w. PubMed DOI PMC

Lhopitallier L., Kronenberg A., Meuwly J.-Y., Locatelli I., Mueller Y., Senn N., D’Acremont V., Boillat-Blanco N. Procalcitonin and lung ultrasonography point-of-care testing to determine antibiotic prescription in patients with lower respiratory tract infection in primary care: Pragmatic cluster randomised trial. BMJ. 2021;374:n2132. doi: 10.1136/bmj.n2132. PubMed DOI PMC

Teggert A., Datta H., Ali Z. Biomarkers for Point-of-Care Diagnosis of Sepsis. Micromachines. 2020;11:286. doi: 10.3390/mi11030286. PubMed DOI PMC

Bostanci N., Selevsek N., Wolski W., Grossmann J., Bao K., Wahlander A., Trachsel C., Schlapbach R., Öztürk V.Ö., Afacan B., et al. Targeted Proteomics Guided by Label-free Quantitative Proteome Analysis in Saliva Reveal Transition Signatures from Health to Periodontal Disease. Mol. Cell. Proteom. 2018;17:1392–1409. doi: 10.1074/mcp.RA118.000718. PubMed DOI PMC

Lim C.T., Zhang Y. Bead-based microfluidic immunoassays: The next generation. Biosens. Bioelectron. 2007;22:1197–1204. doi: 10.1016/j.bios.2006.06.005. PubMed DOI

Pecoraro V., Banfi G., Germagnoli L., Trenti T. A systematic evaluation of immunoassay point-of-care testing to define impact on patients’ outcomes. Ann. Clin. Biochem. 2017;54:420–431. doi: 10.1177/0004563217694377. PubMed DOI

de Oliveira V.M., Moraes R.B., Stein A.T., Wendland E.M. Accuracy of C-Reactive protein as a bacterial infection marker in critically immunosuppressed patients: A systematic review and meta-analysis. J. Crit. Care. 2017;42:129–137. doi: 10.1016/j.jcrc.2017.07.025. PubMed DOI

Strohmeier O., Keller M., Schwemmer F., Zehnle S., Mark D., von Stetten F., Zengerle R., Paust N. Centrifugal microfluidic platforms: Advanced unit operations and applications. Chem. Soc. Rev. 2015;44:6187–6229. doi: 10.1039/C4CS00371C. PubMed DOI

Maguire I., O’Kennedy R., Ducrée J., Regan F. A review of centrifugal microfluidics in environmental monitoring. Anal. Methods. 2018;10:1497–1515. doi: 10.1039/C8AY00361K. DOI

Zehnle S., Rombach M., Zengerle R., von Stetten F., Paust N. Network simulation-based optimization of centrifugo-pneumatic blood plasma separation. Biomicrofluidics. 2017;11:24114. doi: 10.1063/1.4979044. PubMed DOI PMC

Johannsen B., Müller L., Baumgartner D., Karkossa L., Früh S.M., Bostanci N., Karpíšek M., Zengerle R., Paust N., Mitsakakis K. Automated Pre-Analytic Processing of Whole Saliva Using Magnet-Beating for Point-of-Care Protein Biomarker Analysis. Micromachines. 2019;10:833. doi: 10.3390/mi10120833. PubMed DOI PMC

Czilwik G., Vashist S.K., Klein V., Buderer A., Roth G., von Stetten F., Zengerle R., Mark D. Magnetic chemiluminescent immunoassay for human C-reactive protein on the centrifugal microfluidics platform. RSC Adv. 2015;5:61906–61912. doi: 10.1039/C5RA12527H. DOI

Hemmi A., Usui T., Moto A., Tobita T., Soh N., Nakano K., Zeng H., Uchiyama K., Imato T., Nakajima H. A surface plasmon resonance sensor on a compact disk-type microfluidic device. J. Sep. Sci. 2011;34:2913–2919. doi: 10.1002/jssc.201100446. PubMed DOI

Honda N., Lindberg U., Andersson P., Hoffmann S., Takei H. Simultaneous multiple immunoassays in a compact disc-shaped microfluidic device based on centrifugal force. Clin. Chem. 2005;51:1955–1961. doi: 10.1373/clinchem.2005.053348. PubMed DOI

Hosseini S., Aeinehvand M.M., Uddin S.M., Benzina A., Rothan H.A., Yusof R., Koole L.H., Madou M.J., Djordjevic I., Ibrahim F. Microsphere integrated microfluidic disk: Synergy of two techniques for rapid and ultrasensitive dengue detection. Sci. Rep. 2015;5:16485. doi: 10.1038/srep16485. PubMed DOI PMC

Kim T.-H., Abi-Samra K., Sunkara V., Park D.-K., Amasia M., Kim N., Kim J., Kim H., Madou M., Cho Y.-K. Flow-enhanced electrochemical immunosensors on centrifugal microfluidic platforms. Lab Chip. 2013;13:3747–3754. doi: 10.1039/c3lc50374g. PubMed DOI

Lai S., Wang S., Luo J., Lee L.J., Yang S.-T., Madou M.J. Design of a compact disk-like microfluidic platform for enzyme-linked immunosorbent assay. Anal. Chem. 2004;76:1832–1837. doi: 10.1021/ac0348322. PubMed DOI

Lee B.S., Lee J.-N., Park J.-M., Lee J.-G., Kim S., Cho Y.-K., Ko C. A fully automated immunoassay from whole blood on a disc. Lab Chip. 2009;9:1548–1555. doi: 10.1039/b820321k. PubMed DOI

Lin Q., Wu J., Fang X., Kong J. Washing-free centrifugal microchip fluorescence immunoassay for rapid and point-of-care detection of protein. Anal. Chim. Acta. 2020;1118:18–25. doi: 10.1016/j.aca.2020.04.031. PubMed DOI

Lutz S., Lopez-Calle E., Espindola P., Boehm C., Brueckner T., Spinke J., Marcinowski M., Keller T., Tgetgel A., Herbert N., et al. A fully integrated microfluidic platform for highly sensitive analysis of immunochemical parameters. Analyst. 2017;142:4206–4214. doi: 10.1039/C7AN00547D. PubMed DOI

Nwankire C.E., Donohoe G.G., Zhang X., Siegrist J., Somers M., Kurzbuch D., Monaghan R., Kitsara M., Burger R., Hearty S., et al. At-line bioprocess monitoring by immunoassay with rotationally controlled serial siphoning and integrated supercritical angle fluorescence optics. Anal. Chim. Acta. 2013;781:54–62. doi: 10.1016/j.aca.2013.04.016. PubMed DOI

Park J., Sunkara V., Kim T.-H., Hwang H., Cho Y.-K. Lab-on-a-disc for fully integrated multiplex immunoassays. Anal. Chem. 2012;84:2133–2140. doi: 10.1021/ac203163u. PubMed DOI

Park Y.-S., Sunkara V., Kim Y., Lee W.S., Han J.-R., Cho Y.-K. Fully Automated Centrifugal Microfluidic Device for Ultrasensitive Protein Detection from Whole Blood. J. Vis. Exp. 2016;110:54143. doi: 10.3791/54143. PubMed DOI PMC

Riegger L., Grumann M., Nann T., Riegler J., Ehlert O., Bessler W., Mittenbuehler K., Urban G., Pastewka L., Brenner T., et al. Read-out concepts for multiplexed bead-based fluorescence immunoassays on centrifugal microfluidic platforms. Sens. Actuators A-Phys. 2006;126:455–462. doi: 10.1016/j.sna.2005.11.006. DOI

Schaff U.Y., Sommer G.J. Whole blood immunoassay based on centrifugal bead sedimentation. Clin. Chem. 2011;57:753–761. doi: 10.1373/clinchem.2011.162206. PubMed DOI

Shih C.-H., Wu H.-C., Chang C.-Y., Huang W.-H., Yang Y.-F. An enzyme-linked immunosorbent assay on a centrifugal platform using magnetic beads. Biomicrofluidics. 2014;8:52110. doi: 10.1063/1.4896297. PubMed DOI PMC

Uddin R., Donolato M., Hwu E.-T., Hansen M.F., Boisen A. Combined detection of C-reactive protein and PBMC quantification from whole blood in an integrated lab-on-a-disc microfluidic platform. Sens. Actuators B-Chem. 2018;272:634–642. doi: 10.1016/j.snb.2018.07.015. DOI

Wang K., Liang R., Chen H., Lu S., Jia S., Wang W. A microfluidic immunoassay system on a centrifugal platform. Sens. Actuators B-Chem. 2017;251:242–249. doi: 10.1016/j.snb.2017.04.033. DOI

Wu H.-C., Chen Y.-H., Shih C.-H. Disk-based enzyme-linked immunosorbent assays using the liquid-aliquoting and siphoning-evacuation technique. Biomicrofluidics. 2018;12:54101. doi: 10.1063/1.5047281. PubMed DOI PMC

Zhao Y., Czilwik G., Klein V., Mitsakakis K., Zengerle R., Paust N. C-reactive protein and interleukin 6 microfluidic immunoassays with on-chip pre-stored reagents and centrifugo-pneumatic liquid control. Lab Chip. 2017;17:1666–1677. doi: 10.1039/C7LC00251C. PubMed DOI

Abe T., Okamoto S., Taniguchi A., Fukui M., Yamaguchi A., Utsumi Y., Ukita Y. A lab in a bento box: An autonomous centrifugal microfluidic system for an enzyme-linked immunosorbent assay. Anal. Methods. 2020;12:4858–4866. doi: 10.1039/D0AY01459A. PubMed DOI

Lee W., Jung J., Hahn Y.K., Kim S.K., Lee Y., Lee J., Lee T.-H., Park J.-Y., Seo H., Lee J.N., et al. A centrifugally actuated point-of-care testing system for the surface acoustic wave immunosensing of cardiac troponin I. Analyst. 2013;138:2558–2566. doi: 10.1039/c3an00182b. PubMed DOI

Burger R., Reith P., Kijanka G., Akujobi V., Abgrall P., Ducrée J. Array-based capture, distribution, counting and multiplexed assaying of beads on a centrifugal microfluidic platform. Lab Chip. 2012;12:1289–1295. doi: 10.1039/c2lc21170j. PubMed DOI

Miyazaki C.M., Kinahan D.J., Mishra R., Mangwanya F., Kilcawley N., Ferreira M., Ducrée J. Label-free, spatially multiplexed SPR detection of immunoassays on a highly integrated centrifugal Lab-on-a-Disc platform. Biosens. Bioelectron. 2018;119:86–93. doi: 10.1016/j.bios.2018.07.056. PubMed DOI

Gao Z., Chen Z., Deng J., Li X., Qu Y., Xu L., Luo Y., Lu Y., Liu T., Zhao W., et al. Measurement of Carcinoembryonic Antigen in Clinical Serum Samples Using a Centrifugal Microfluidic Device. Micromachines. 2018;9:470. doi: 10.3390/mi9090470. PubMed DOI PMC

Gijs M.A.M., Lacharme F., Lehmann U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chem. Rev. 2010;110:1518–1563. doi: 10.1021/cr9001929. PubMed DOI

Tighe P.J., Ryder R.R., Todd I., Fairclough L.C. ELISA in the multiplex era: Potentials and pitfalls. Proteom. Clin. Appl. 2015;9:406–422. doi: 10.1002/prca.201400130. PubMed DOI PMC

Diamandis E.P., Christopoulos T.K. Immunoassay. Academic Press; San Diego, CA, USA: 1996.

Slagle K.M., Ghosn S.J. Immunoassays: Tools for Sensitive, Specific, and Accurate Test Results. Lab. Med. 1996;27:177–183. doi: 10.1093/labmed/27.3.177. DOI

Mensink M.A., Frijlink H.W., van der Voort Maarschalk K., Hinrichs W.L.J. How sugars protect proteins in the solid state and during drying (review): Mechanisms of stabilization in relation to stress conditions. Eur. J. Pharm. Biopharm. 2017;114:288–295. doi: 10.1016/j.ejpb.2017.01.024. PubMed DOI

Johannsen B., Karpíšek M., Baumgartner D., Klein V., Bostanci N., Paust N., Früh S.M., Zengerle R., Mitsakakis K. One-step, wash-free, bead-based immunoassay employing bound-free phase detection. Anal. Chim. Acta. 2021;1153:338280. doi: 10.1016/j.aca.2021.338280. PubMed DOI

Marnell L., Mold C., Du Clos T.W. C-reactive protein: Ligands, receptors and role in inflammation. Clin. Immunol. 2005;117:104–111. doi: 10.1016/j.clim.2005.08.004. PubMed DOI

Schuijt T.J., Boss D.S., Musson R.E.A., Demir A.Y. Influence of point-of-care C-reactive protein testing on antibiotic prescription habits in primary care in the Netherlands. Fam. Pract. 2018;35:179–185. doi: 10.1093/fampra/cmx081. PubMed DOI

Eccles S., Pincus C., Higgins B., Woodhead M. Diagnosis and management of community and hospital acquired pneumonia in adults: Summary of NICE guidance. BMJ. 2014;349:g6722. doi: 10.1136/bmj.g6722. PubMed DOI

Johannsen B., Mark D., Boillat-Blanco N., Fresco A., Baumgartner D., Zengerle R., Mitsakakis K. Rapid Diagnosis of Respiratory Tract Infections Using a Point-of-Care Platform Incorporating a Clinical Decision Support Algorithm. Stud. Health Technol. Inform. 2020;273:234–239. PubMed

Prins H.J., Duijkers R., van der Valk P., Schoorl M., Daniels J.M.A., van der Werf T.S., Boersma W.G. CRP-guided antibiotic treatment in acute exacerbations of COPD in hospital admissions. Eur. Respir. J. 2019;53:1802014. doi: 10.1183/13993003.02014-2018. PubMed DOI

Schwarz I., Zehnle S., Hutzenlaub T., Zengerle R., Paust N. System-level network simulation for robust centrifugal-microfluidic lab-on-a-chip systems. Lab Chip. 2016;16:1873–1885. doi: 10.1039/C5LC01525A. PubMed DOI

Focke M., Stumpf F., Faltin B., Reith P., Bamarni D., Wadle S., Müller C., Reinecke H., Schrenzel J., Francois P., et al. Microstructuring of polymer films for sensitive genotyping by real-time PCR on a centrifugal microfluidic platform. Lab Chip. 2010;10:2519–2526. doi: 10.1039/c004954a. PubMed DOI

van Oordt T., Barb Y., Smetana J., Zengerle R., von Stetten F. Miniature stick-packaging—an industrial technology for pre-storage and release of reagents in lab-on-a-chip systems. Lab Chip. 2013;13:2888–2892. doi: 10.1039/c3lc50404b. PubMed DOI

Zehnle S., Schwemmer F., Roth G., von Stetten F., Zengerle R., Paust P. Centrifugo-dynamic inward pumping of liquids on a centrifugal microfluidic platform. Lab Chip. 2012;12:5142–5145. doi: 10.1039/c2lc40942a. PubMed DOI

Hess J.F., Zehnle S., Juelg P., Hutzenlaub T., Zengerle R., Paust N. Review on pneumatic operations in centrifugal microfluidics. Lab Chip. 2019;19:3745–3770. doi: 10.1039/C9LC00441F. PubMed DOI

Grumann M., Geipel A., Riegger L., Zengerle R., Ducrée J. Batch-mode mixing on centrifugal microfluidic platforms. Lab Chip. 2005;5:560–565. doi: 10.1039/b418253g. PubMed DOI

Li Q., Luo K.H., Kang Q.J., Chen Q. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting. Phys. Rev. E. 2014;90:53301. doi: 10.1103/PhysRevE.90.053301. PubMed DOI

Jacobsen A.E., Sullivan W.F. Centrifugal Sedimentation Method for Particle Size Distribution. Ind. Eng. Chem. Anal. Ed. 1946;18:360–364. doi: 10.1021/i560154a007. DOI

Scott D.J., Harding S.E., Rowe A.J., Scott D., Rowe A., editors. Analytical Ultracentrifugation. Royal Society of Chemistry; Cambridge, UK: 2007. Introduction to Differential Sedimentation; pp. 270–290.

Manning M.C., Chou D.K., Murphy B.M., Payne R.W., Katayama D.S. Stability of protein pharmaceuticals: An update. Pharm. Res. 2010;27:544–575. doi: 10.1007/s11095-009-0045-6. PubMed DOI

Baumgartner D., Johannsen B., Specht M., Lüddecke J., Rombach M., Hin S., Paust N., von Stetten F., Zengerle R., Herz C., et al. OralDisk: A Chair-Side Compatible Molecular Platform Using Whole Saliva for Monitoring Oral Health at the Dental Practice. Biosensors. 2021;11:423. doi: 10.3390/bios11110423. PubMed DOI PMC

Hin S., Lopez-Jimena B., Bakheit M., Klein V., Stack S., Fall C., Sall A., Enan K., Mustafa M., Gillies L., et al. Fully automated point-of-care differential diagnosis of acute febrile illness. PLoS Negl. Trop. Dis. 2021;15:e0009177. doi: 10.1371/journal.pntd.0009177. PubMed DOI PMC

Rombach M., Hin S., Specht M., Johannsen B., Lüddecke J., Paust N., Zengerle R., Roux L., Sutcliffe T., Peham J.R., et al. RespiDisk: A point-of-care platform for fully automated detection of respiratory tract infection pathogens in clinical samples. Analyst. 2020;145:7040–7047. doi: 10.1039/D0AN01226B. PubMed DOI

Molecular Probes, FluoSpheres® Fluorescent Microspheres: Product Information. 2005. [(accessed on 11 May 2022)]. Available online: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/mp05000.pdf.

Jeyachandran Y.L., Mielczarski J.A., Mielczarski E., Rai B. Efficiency of blocking of non-specific interaction of different proteins by BSA adsorbed on hydrophobic and hydrophilic surfaces. J. Colloid Interface Sci. 2010;341:136–142. doi: 10.1016/j.jcis.2009.09.007. PubMed DOI

Lee J.C., Lee L.L. Preferential solvent interactions between proteins and polyethylene glycols. J. Biol. Chem. 1981;256:625–631. doi: 10.1016/S0021-9258(19)70019-2. PubMed DOI

Arakawa T., Timasheff S.N. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry. 1985;24:6756–6762. doi: 10.1021/bi00345a005. PubMed DOI

Bhat R., Timasheff S.N. Steric exclusion is the principal source of the preferential hydration of proteins in the presence of polyethylene glycols. Protein Sci. 1992;1:1133–1143. doi: 10.1002/pro.5560010907. PubMed DOI PMC

Rawat S., Raman Suri C., Sahoo D.K. Molecular mechanism of polyethylene glycol mediated stabilization of protein. Biochem. Biophys. Res. Commun. 2010;392:561–566. doi: 10.1016/j.bbrc.2010.01.067. PubMed DOI

Chakraborty C., Agrawal A. Computational analysis of C-reactive protein for assessment of molecular dynamics and interaction properties. Cell Biochem. Biophys. 2013;67:645–656. doi: 10.1007/s12013-013-9553-4. PubMed DOI PMC

Jakobsen K.A., Melbye H., Kelly M.J., Ceynowa C., Mölstad S., Hood K., Butler C.C. Influence of CRP testing and clinical findings on antibiotic prescribing in adults presenting with acute cough in primary care. Scand. J. Prim. Health Care. 2010;28:229–236. doi: 10.3109/02813432.2010.506995. PubMed DOI PMC

Alcoba G., Keitel K., Maspoli V., Lacroix L., Manzano S., Gehri M., Tabin R., Gervaix A., Galetto-Lacour A. A three-step diagnosis of pediatric pneumonia at the emergency department using clinical predictors, C-reactive protein, and pneumococcal PCR. Eur. J. Pediatr. 2017;176:815–824. doi: 10.1007/s00431-017-2913-0. PubMed DOI PMC

Hahn-Schickard-Gesellschaft für Angewandte Forschung e.V., Lab-on-a-Chip Foundry. [(accessed on 11 May 2022)]. Available online: https://www.hahn-schickard.de/en/service-portfolio/production/lab-on-a-chip-foundry.

Auclair G., Zegers I., Charoud-Got J., Munoz-Pineiro M., Hanisch K., Boulo S., Trapmann S., Schimmel H., Emons H., Schreiber W. The Certification of the Mass Concentration of C-Reactive Protein in Human Serum—Certified Reference Material ERM®-DA474/IFCC. Publications Office of the European Union; Luxembourg: 2011. EUR 24922 EN.

Hin S., Baumgartner D., Specht M., Lüddecke J., Mahmodi Arjmand E., Johannsen B., Schiedel L., Rombach M., Paust N., von Stetten F., et al. VectorDisk: A Microfluidic Platform Integrating Diagnostic Markers for Evidence-Based Mosquito Control. Processes. 2020;8:1677. doi: 10.3390/pr8121677. DOI

Mitsakakis K. Novel lab-on-a-disk platforms: A powerful tool for molecular fingerprinting of oral and respiratory tract infections. Expert Rev. Mol. Diagn. 2021;21:523–526. doi: 10.1080/14737159.2021.1920400. PubMed DOI

Teh R., Tee W.D., Tan E., Fan K., Koh C.J., Tambyah P.A., Oon J., Tee N., Soh A.Y.S., Siah K.T.H. Review of the role of gastrointestinal multiplex polymerase chain reaction in the management of diarrheal illness. J. Gastroenterol. Hepatol. 2021;36:3286–3297. doi: 10.1111/jgh.15581. PubMed DOI

Chen W., Zheng K.I., Liu S., Yan Z., Xu C., Qiao Z. Plasma CRP level is positively associated with the severity of COVID-19. Ann. Clin. Microbiol. Antimicrob. 2020;19:18. doi: 10.1186/s12941-020-00362-2. PubMed DOI PMC

Chen C.-C., Lee I.-K., Liu J.-W., Huang S.-Y., Wang L. Utility of C-Reactive Protein Levels for Early Prediction of Dengue Severity in Adults. Biomed. Res. Int. 2015;2015:936062. doi: 10.1155/2015/936062. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...