Patient Stratification for Antibiotic Prescriptions Based on the Bound-Free Phase Detection Immunoassay of C-Reactive Protein in Serum Samples
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
633780
European Commission
13GW0540B
Federal Ministry of Education and Research
13GW0495C
Federal Ministry of Education and Research
01QE1939B
Federal Ministry of Education and Research
PubMed
38131769
PubMed Central
PMC10741775
DOI
10.3390/bios13121009
PII: bios13121009
Knihovny.cz E-zdroje
- Klíčová slova
- C-reactive protein, biomarkers, bound-free phase, clinical samples, diagnostics, immunoassay, patient stratification, respiratory tract infections,
- MeSH
- biologické markery MeSH
- C-reaktivní protein * analýza MeSH
- ELISA metody MeSH
- imunoanalýza metody MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- C-reaktivní protein * MeSH
C-reactive protein is a well-studied host response biomarker, whose diagnostic performance depends on its accurate classification into concentration zones defined by clinical scenario-specific cutoff values. We validated a newly developed, bead-based, bound-free phase detection immunoassay (BFPD-IA) versus a commercial CE-IVD enzyme-linked immunosorbent assay (ELISA) kit and a commercial CE-IVD immunoturbidimetric assay (ITA) kit. The latter was performed on a fully automated DPC Konelab 60i clinical analyzer used in routine diagnosis. We classified 53 samples into concentration zones derived from four different sets of cutoff values that are related to antibiotic prescription scenarios in the case of respiratory tract infections. The agreements between the methods were ELISA/ITA at 87.7%, ELISA/BFPD-IA at 87.3%, and ITA/-BFPD-IA at 93.9%, reaching 98-99% in all cases when considering the calculated relative combined uncertainty of the single measurement of each sample. In a subgroup of 37 samples, which were analyzed for absolute concentration quantification, the scatter plot slopes' correlations were as follows: ELISA/ITA 1.15, R2 = 0.97; BFPD-IA/ELISA 1.12, R2 = 0.95; BFPD-IA/ITA 0.95, R2 = 0.93. These very good performances and the agreement between BFPD-IA and ITA (routine diagnostic), combined with BFPD-IA's functional advantages over ITA (and ELISA)-such as quick time to result (~20 min), reduced consumed reagents (only one assay buffer and no washing), few and easy steps, and compatibility with nucleic-acid-amplification instruments-render it a potential approach for a reliable, cost-efficient, evidence-based point-of-care diagnostic test for guiding antibiotic prescriptions.
Faculty of Pharmacy Masaryk University Palackeho trida 1946 1 61242 Brno Czech Republic
Hahn Schickard Georges Koehler Allee 103 79110 Freiburg Germany
Zobrazit více v PubMed
Schuetz P., Wirz Y., Sager R., Christ-Crain M., Stolz D., Tamm M., Bouadma L., Luyt C.E., Wolff M., Chastre J., et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: A patient level meta-analysis. Lancet Infect. Dis. 2018;18:95–107. doi: 10.1016/S1473-3099(17)30592-3. PubMed DOI
Martínez-González N.A., Keizer E., Plate A., Coenen S., Valeri F., Verbakel J.Y.J., Rosemann T., Neuner-Jehle S., Senn O. Point-of-Care C-Reactive Protein Testing to Reduce Antibiotic Prescribing for Respiratory Tract Infections in Primary Care: Systematic Review and Meta-Analysis of Randomised Controlled Trials. Antibiotics. 2020;9:610. doi: 10.3390/antibiotics9090610. PubMed DOI PMC
Smedemark S.A., Aabenhus R., Llor C., Fournaise A., Olsen O., Jørgensen K.J. Biomarkers as point-of-care tests to guide prescription of antibiotics in people with acute respiratory infections in primary care. Cochrane Database Syst. Rev. 2022;10:CD010130. doi: 10.1002/14651858.CD010130.pub3. PubMed DOI PMC
C-Reactive Protein Point-of-Care Testing (CRP POCT) to Guide Antibiotic Prescribing in Primary Care Settings for Acute Respiratory Tract Infections (RTIs). Rapid Assessment on Other Health Technologies Using the HTA Core Model for Rapid Relative Effectiveness Assessment. EUnetHTA Project ID: OTCA012. 2019. [(accessed on 3 June 2023)]. Available online: https://www.eunethta.eu/wp-content/uploads/2019/02/EUnetHTA_OTCA012_CRP-POCT_31012019.pdf.
Pepys M.B., Hirschfield G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003;111:1805–1812. doi: 10.1172/JCI200318921. PubMed DOI PMC
Cals J.W.L., Butler C.C., Hopstaken R.M., Hood K., Dinant G.-J. Effect of point of care testing for C reactive protein and training in communication skills on antibiotic use in lower respiratory tract infections: Cluster randomised trial. BMJ. 2009;338:b1374. doi: 10.1136/bmj.b1374. PubMed DOI PMC
Cals J.W.L., Schot M.J.C., de Jong S.A.M., Dinant G.-J., Hopstaken R.M. Point-of-care C-reactive protein testing and antibiotic prescribing for respiratory tract infections: A randomized controlled trial. Ann. Fam. Med. 2010;8:124–133. doi: 10.1370/afm.1090. PubMed DOI PMC
Jakobsen K.A., Melbye H., Kelly M.J., Ceynowa C., Mölstad S., Hood K., Butler C.C. Influence of CRP testing and clinical findings on antibiotic prescribing in adults presenting with acute cough in primary care. Scand. J. Prim. Health Care. 2010;28:229–236. doi: 10.3109/02813432.2010.506995. PubMed DOI PMC
Cooke J., Llor C., Hopstaken R., Dryden M., Butler C. Respiratory tract infections (RTIs) in primary care: Narrative review of C reactive protein (CRP) point-of-care testing (POCT) and antibacterial use in patients who present with symptoms of RTI. BMJ Open Resp. Res. 2015;2:e000086. doi: 10.1136/bmjresp-2015-000086. PubMed DOI PMC
Little P., Stuart B., Francis N., Douglas E., Tonkin-Crine S., Anthierens S., Cals J.W., Melbye H., Santer M., Moore M., et al. Effects of internet-based training on antibiotic prescribing rates for acute respiratory-tract infections: A multinational, cluster, randomised, factorial, controlled trial. Lancet. 2013;382:1175–1182. doi: 10.1016/S0140-6736(13)60994-0. PubMed DOI PMC
Butler C.C., Gillespie D., White P., Bates J., Lowe R., Thomas-Jones E., Wootton M., Hood K., Phillips R., Melbye H., et al. C-Reactive Protein Testing to Guide Antibiotic Prescribing for COPD Exacerbations. N. Engl. J. Med. 2019;381:111–120. doi: 10.1056/NEJMoa1803185. PubMed DOI
Boere T.M., van Buul L.W., Hopstaken R.M., Veenhuizen R.B., van Tulder M.W., Cals J.W.L., Verheij T.J.M., Hertogh C.M.P.M. Using point-of-care C-reactive protein to guide antibiotic prescribing for lower respiratory tract infections in elderly nursing home residents (UPCARE): Study design of a cluster randomized controlled trial. BMC Health Serv. Res. 2020;20:149. doi: 10.1186/s12913-020-5006-0. PubMed DOI PMC
Eccles S., Pincus C., Higgins B., Woodhead M., on behalf of the Guideline Development Group Diagnosis and management of community and hospital acquired pneumonia in adults: Summary of NICE guidance. BMJ. 2014;349:g6722. doi: 10.1136/bmj.g6722. PubMed DOI
Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides. 2015;72:4–15. doi: 10.1016/j.peptides.2015.04.012. PubMed DOI
Tighe P.J., Ryder R.R., Todd I., Fairclough L.C. ELISA in the multiplex era: Potentials and pitfalls. Proteom. Clin. Appl. 2015;9:406–422. doi: 10.1002/prca.201400130. PubMed DOI PMC
O’Kennedy R., Murphy C. Immunoassays: Development, Applications and Future Trends. Pan Stanford Publishing; Milton, GA, USA: 2017.
Luong J., Vashist S.K., editors. Handbook of Immunoassay Technologies: Approaches, Performances, and Applications. Academic Press an imprint of Elsevier; London, UK: 2018.
van der Wal F.J., Bergervoet J.H.W., Achterberg R.P., Haasnoot W. Bead-based immunoassays. In: Koistinen H., Stenman U.-H., editors. Novel Approaches in Immunoassays. Future Medicine Ltd., Unitec House; London, UK: 2014. pp. 52–71.
Vashist S.K. Trends in Multiplex Immunoassays for In Vitro Diagnostics and Point-of-Care Testing. Diagnostics. 2021;11:1630. doi: 10.3390/diagnostics11091630. PubMed DOI PMC
Khan M., Shah S.H., Salman M., Abdullah M., Hayat F., Akbar S. Enzyme-Linked Immunosorbent Assay versus Chemiluminescent Immunoassay: A General Overview. Glob. J. Med. Pharm. Biomed. Update. 2023;18:1. doi: 10.25259/GJMPBU_77_2022. DOI
Johannsen B., Karpíšek M., Baumgartner D., Klein V., Bostanci N., Paust N., Früh S.M., Zengerle R., Mitsakakis K. One-step, wash-free, bead-based immunoassay employing bound-free phase detection. Anal. Chim. Acta. 2021;1153:338280. doi: 10.1016/j.aca.2021.338280. PubMed DOI
Johannsen B., Baumgartner D., Karkossa L., Paust N., Karpíšek M., Bostanci N., Zengerle R., Mitsakakis K. ImmunoDisk—A Fully Automated Bead-Based Immunoassay Cartridge with All Reagents Pre-Stored. Biosensors. 2022;12:413. doi: 10.3390/bios12060413. PubMed DOI PMC
Johannsen B., Mark D., Boillat-Blanco N., Fresco A., Baumgartner D., Zengerle R., Mitsakakis K. Rapid Diagnosis of Respiratory Tract Infections Using a Point-of-Care Platform Incorporating a Clinical Decision Support Algorithm. Stud. Health Technol. Inform. 2020;273:234–239. PubMed
Schuijt T.J., Boss D.S., Musson R.E.A., Demir A.Y. Influence of point-of-care C-reactive protein testing on antibiotic prescription habits in primary care in the Netherlands. Fam. Pract. 2018;35:179–185. doi: 10.1093/fampra/cmx081. PubMed DOI
apDia In Vitro Diagnostic Kit—CRP ELISA Manual. [(accessed on 10 October 2023)]. Available online: https://apdiagroup.com/wp-content/uploads/2022/07/740001-IFU-CRP-96T-vs06-2022.pdf.
Diasys CRP FS Immunoturbidimetric Test to Determine C-Reactive Protein (CRP) in Serum and Plasma. [(accessed on 10 October 2023)]. Available online: https://www.diasys-diagnostics.com/products/reagents/immunoturbidimetry/reagent-details/7-crp-fs/reagent.show.
The Thermo Konelab 60I Chemistry Analyzer, Provided by Thermo Fisher Scientific. [(accessed on 10 October 2023)]. Available online: https://www.diamonddiagnostics.com/products/Thermo-Konelab-60I-Chemistry-Analyzer_0-TM-KONELAB60I.
Diasys Calibrators: TruCal CRP: Liquid-Stable Calibrator Set For Use with CRP FS. [(accessed on 10 October 2023)]. Available online: https://www.diasys-diagnostics.com/products/calibratorscontrols/calibrators/product-details/24-trucal-crp/product.show.
Minnaard M.C., van de Pol A.C., Broekhuizen B.D.L., Verheij T.J.M., Hopstaken R.M., van Delft S., Kooijman-Buiting A.M.J., de Groot J.A.H., de Wit N.J. Analytical performance, agreement and user-friendliness of five C-reactive protein point-of-care tests. Scand. J. Clin. Lab. Investig. 2013;73:627–634. doi: 10.3109/00365513.2013.841985. PubMed DOI
World Health Organization . Landscape of Diagnostics against Antibacterial Resistance, Gaps and Priorities. World Health Organization; Geneva, Switzerland: 2019. Licence: CC BY-NC-SA 3.0 IGO.
Bio-Rad Datasheet, LiquicheckTM Elevated CRP Control Levels 1, 2 and 3. [(accessed on 10 October 2023)]. Available online: https://www.bio-rad.com/de-de/product/liquichek-elevated-crp-control?ID=23baeb40-b1f4-41af-b6fc-8006a2f761b3.
Luo Y., Pehrsson M., Langholm L., Karsdal M., Bay-Jensen A.-C., Sun S. Lot-to-Lot Variance in Immunoassays—Causes, Consequences, and Solutions. Diagnostics. 2023;13:1835. doi: 10.3390/diagnostics13111835. PubMed DOI PMC
Masetto T., Eidizadeh A., Peter C., Grimmler M. National external quality assessment and direct method comparison reflect crucial deviations of Procalcitonin measurements in Germany. Clin. Chim. Acta. 2022;529:67–75. doi: 10.1016/j.cca.2022.02.007. PubMed DOI
Warnken T., Huber K., Feige K. Comparison of three different methods for the quantification of equine insulin. BMC Vet. Res. 2016;12:196. doi: 10.1186/s12917-016-0828-z. PubMed DOI PMC
Jukic T., Drobne D., Pusavec S., Ihan A., Stubljar D., Starc A. Comparison of 3 Enzyme-Linked Immunoassay Methods to Evaluate Serum Concentrations of Infliximab and Antibodies to Infliximab in 32 Patients with Moderate to Severe Inflammatory Bowel Disease. Med. Sci. Monit. 2023;29:e939084. doi: 10.12659/MSM.939084. PubMed DOI PMC
Liew M., Groll M.C., Thompson J.E., Call S.L., Moser J.E., Hoopes J.D. Validating a custom multiplex ELISA against individual commercial immunoassays using clinical samples. BioTechniques. 2007;42:327–333. doi: 10.2144/000112332. PubMed DOI
Technical Note for Maxisop Microtitre Plate (Invitrogen, By Thermo Fisher Scientific) [(accessed on 10 October 2023)]. Available online: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/44-2404.pdf.
Lippi G., Blanckaert N., Bonini P., Green S., Kitchen S., Palicka V., Vassault A.J., Plebani M. Haemolysis: An overview of the leading cause of unsuitable specimens in clinical laboratories. Clin. Chem. Lab. Med. 2008;46:764. doi: 10.1515/CCLM.2008.170. PubMed DOI
Lippi G., Plebani M., Di Somma S., Cervellin G. Hemolyzed specimens: A major challenge for emergency departments and clinical laboratories. Crit. Rev. Clin. Lab. Sci. 2011;48:143–153. doi: 10.3109/10408363.2011.600228. PubMed DOI
Lippi G., Cadamuro J. Visual assessment of sample quality: Quo usque tandem? Clin. Chem. Lab. Med. 2018;56:513–515. doi: 10.1515/cclm-2017-0867. PubMed DOI
CRP ELISA, Instructions for Use, Tecan. [(accessed on 10 October 2023)]. Available online: https://www.ibl-international.com/media/mageworx/downloads/attachment/file/e/u/eu59131_ifu_eu_en_crp_elisa_2022-06_sym9.pdf.
Kurian A., Neumann E.J., Hall W.F., Marks D. Effects of blood sample mishandling on ELISA results for infectious bronchitis virus, avian encephalomyelitis virus and chicken anaemia virus. Vet. J. 2012;192:378–381. doi: 10.1016/j.tvjl.2011.08.028. PubMed DOI
Quality Control Center Switzerland TECHNISCHES DATENBLATT 31; Hämolysierte, Lipämische, Ikterische Proben. [(accessed on 10 October 2023)]. Available online: http://www.cscq.ch/SiteCSCQ/FichierPDF_DE/FT-Haemolysierte-lipaemische-ikterische-Proben.pdf.
The Certification of the Mass Concentration of C-Reactive Protein in Human Serum—Certified Reference Material ERM®-DA474/IFCC. Publications Office of the European Union; Luxembourg: 2011.
Dupuy A.M., Bargnoux A.S., Larcher R., Merindol A., Masetto T., Badiou S., Cristol J.P. Bioanalytical Performance of a New Particle-Enhanced Method for Measuring Procalcitonin. Diagnostics. 2020;10:461. doi: 10.3390/diagnostics10070461. PubMed DOI PMC
Lhopitallier L., Kronenberg A., Meuwly J.-Y., Locatelli I., Mueller Y., Senn N., D’Acremont V., Boillat-Blanco N. Procalcitonin and lung ultrasonography point-of-care testing to determine antibiotic prescription in patients with lower respiratory tract infection in primary care: Pragmatic cluster randomised trial. BMJ. 2021;374:n2132. doi: 10.1136/bmj.n2132. PubMed DOI PMC
Van den Bruel A., Thompson M.J., Haj-Hassan T., Stevens R., Moll H., Lakhanpaul M., Mant D. Diagnostic value of laboratory tests in identifying serious infections in febrile children: Systematic review. BMJ. 2011;342:d3082. doi: 10.1136/bmj.d3082. PubMed DOI
Gentile I., Schiano Moriello N., Hopstaken R., Llor C., Melbye H., Senn O. The Role of CRP POC Testing in the Fight against Antibiotic Overuse in European Primary Care: Recommendations from a European Expert Panel. Diagnostics. 2023;13:320. doi: 10.3390/diagnostics13020320. PubMed DOI PMC
Gilbert D., Gelfer G., Wang L., Myers J., Bajema K., Johnston M., Leggett J. The potential of molecular diagnostics and serum procalcitonin levels to change the antibiotic management of community-acquired pneumonia. Diagn. Microbiol. Infect. Dis. 2016;86:102–107. doi: 10.1016/j.diagmicrobio.2016.06.008. PubMed DOI PMC
Minnaard M.C., de Groot J.A.H., Hopstaken R.M., Schierenberg A., de Wit N.J., Reitsma J.B., Broekhuizen B.D.L., van Vugt S.F., Neven A.K., Graffelman A.W., et al. The added value of C-reactive protein measurement in diagnosing pneumonia in primary care: A meta-analysis of individual patient data. CMAJ. 2017;189:E56–E63. doi: 10.1503/cmaj.151163. PubMed DOI PMC
Alcoba G., Keitel K., Maspoli V., Lacroix L., Manzano S., Gehri M., Tabin R., Gervaix A., Galetto-Lacour A. A three-step diagnosis of pediatric pneumonia at the emergency department using clinical predictors, C-reactive protein, and pneumococcal PCR. Eur. J. Pediatr. 2017;176:815–824. doi: 10.1007/s00431-017-2913-0. PubMed DOI PMC
Nijman R.G., Vergouwe Y., Moll H.A., Smit F.J., Weerkamp F., Steyerberg E.W., van der Lei J., de Rijke Y.B., Oostenbrink R. Validation of the Feverkidstool and procalcitonin for detecting serious bacterial infections in febrile children. Pediatr. Res. 2018;83:466–476. doi: 10.1038/pr.2017.216. PubMed DOI
van Houten C., van de Maat J.S., Naaktgeboren C., Bont L., Oostenbrink R. Update of a clinical prediction model for serious bacterial infections in preschool children by adding a host-protein-based assay: A diagnostic study. BMJ Paediatr. Open. 2019;3:e000416. doi: 10.1136/bmjpo-2018-000416. PubMed DOI PMC
Hogendoorn S.K.L., Lhopitallier L., Richard-Greenblatt M., Tenisch E., Mbarack Z., Samaka J., Mlaganile T., Mamin A., Genton B., Kaiser L., et al. Clinical sign and biomarker-based algorithm to identify bacterial pneumonia among outpatients with lower respiratory tract infection in Tanzania. BMC Infect. Dis. 2022;22:39. doi: 10.1186/s12879-021-06994-9. PubMed DOI PMC
Pellé K.G., Rambaud-Althaus C., D’Acremont V., Moran G., Sampath R., Katz Z., Moussy F.G., Mehl G.L., Dittrich S. Electronic clinical decision support algorithms incorporating point-of-care diagnostic tests in low-resource settings: A target product profile. BMJ Glob. Health. 2020;5:e002067. doi: 10.1136/bmjgh-2019-002067. PubMed DOI PMC
Keitel K., Kagoro F., Samaka J., Masimba J., Said Z., Temba H., Mlaganile T., Sangu W., Rambaud-Althaus C., Gervaix A. A novel electronic algorithm using host biomarker point-of-care tests for the management of febrile illnesses in Tanzanian children (e-POCT): A randomized, controlled non-inferiority trial. PLoS Med. 2017;14:e1002411. doi: 10.1371/journal.pmed.1002411. PubMed DOI PMC
Suttels V., Van Singer M., Clack L.C., Plüss-Suard C., Niquille A., Mueller Y., Boillat Blanco N. Factors Influencing the Implementation of Antimicrobial Stewardship in Primary Care: A Narrative Review. Antibiotics. 2023;12:30. doi: 10.3390/antibiotics12010030. PubMed DOI PMC
Hays J.P., Mitsakakis K., Luz S., van Belkum A., Becker K., van den Bruel A., Harbarth S., Rex J.H., Simonsen G.S., Werner G., et al. The successful uptake and sustainability of rapid infectious disease and antimicrobial resistance point-of-care testing requires a complex ’mix-and-match’ implementation package. Eur. J. Clin. Microbiol. Infect. Dis. 2019;38:1015–1022. doi: 10.1007/s10096-019-03492-4. PubMed DOI PMC
Strumann C., Steinhaeuser J., Emcke T., Sonnichsen A., Goetz K. Communication training and the prescribing pattern of antibiotic prescription in primary health care. PLoS ONE. 2020;15:e0233345. doi: 10.1371/journal.pone.0233345. PubMed DOI PMC
Rombach M., Hin S., Specht M., Johannsen B., Lüddecke J., Paust N., Zengerle R., Roux L., Sutcliffe T., Peham J.R., et al. RespiDisk: A point-of-care platform for fully automated detection of respiratory tract infection pathogens in clinical samples. Analyst. 2020;145:7040–7047. doi: 10.1039/D0AN01226B. PubMed DOI