Automated Pre-Analytic Processing of Whole Saliva Using Magnet-Beating for Point-of-Care Protein Biomarker Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GA-633780
European Commission
Funding programme Open Access Publishing
German Research Foundation (DFG) and the University of Freiburg
PubMed
31801193
PubMed Central
PMC6952956
DOI
10.3390/mi10120833
PII: mi10120833
Knihovny.cz E-zdroje
- Klíčová slova
- ELISA, centrifugal microfluidics, diagnostics, immunoassay, magnet-beating, point-of-care, pre-analytics, protein biomarkers, whole saliva,
- Publikační typ
- časopisecké články MeSH
Saliva offers many advantages for point-of-care (PoC) diagnostic applications due to non-invasive, easy, and cost-effective methods of collection. However, the complex matrix with its non-Newtonian behavior and high viscosity poses handling challenges. Several tedious and long pre-analytic steps, incompatible with PoC use, are required to liquefy and homogenize saliva samples before protein analysis can be performed. We apply magnet-beating to reduce hands-on time and to simplify sample preparation. A magnet in a chamber containing the whole saliva is actuated inside a centrifugal microfluidic cartridge by the interplay of centrifugal and magnetic forces. Rigorous mixing, which homogenizes the saliva sample, is then initiated. Consequently, fewer manual steps are required to introduce the whole saliva into the cartridge. After 4 min of magnet-beating, the processed sample can be used for protein analysis. The viscosity of whole saliva has been reduced from 10.4 to 2.3 mPa s. Immunoassay results after magnet-beating for three salivary periodontal markers (MMP-8, MMP-9, TIMP-1) showed a linear correlation with a slope of 0.99 when compared to results of reference method treated samples. Conclusively, magnet-beating has been shown to be a suitable method for the pre-analytic processing of whole saliva for fully automated PoC protein analysis.
Zobrazit více v PubMed
Humphrey S.P., Williamson R.T. A review of saliva: normal composition, flow, and function. J. Prosthet. Dent. 2001;85:162–169. doi: 10.1067/mpr.2001.113778. PubMed DOI
Slowey P.D. Saliva Collection Devices and Diagnostic Platforms. In: Streckfus C.F., editor. Advances in Salivary Diagnostics. Springer Berlin Heidelberg; Berlin, Germany: 2015. pp. 33–61.
Malamud D. Saliva as a diagnostic fluid. Dent. Clin. North Am. 2011;55:159–178. doi: 10.1016/j.cden.2010.08.004. PubMed DOI PMC
Srivastava N., Nayak P.A., Rana S. Point of Care- A Novel Approach to Periodontal Diagnosis-A Review. J. Clin. Diagn. Res. 2017;11:ZE01–ZE06. PubMed PMC
Bostanci N., Selevsek N., Wolski W., Grossmann J., Bao K., Wahlander A., Trachsel C., Schlapbach R., Öztürk V.Ö., Afacan B., et al. Targeted Proteomics Guided by Label-free Quantitative Proteome Analysis in Saliva Reveal Transition Signatures from Health to Periodontal Disease. Mol. Cell. Proteomics. 2018;17:1392–1409. doi: 10.1074/mcp.RA118.000718. PubMed DOI PMC
Silbereisen A., Hallak A.K., Nascimento G.G., Sorsa T., Belibasakis G.N., Lopez R., Bostanci N. Regulation of PGLYRP1 and TREM-1 during Progression and Resolution of Gingival Inflammation. JDR Clin. Trans. Res. 2019;4:352–359. doi: 10.1177/2380084419844937. PubMed DOI
Bostanci N., Oztürk V.Ö., Emingil G., Belibasakis G.N. Elevated oral and systemic levels of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in periodontitis. J. Dent. Res. 2013;92:161–165. doi: 10.1177/0022034512470691. PubMed DOI
Nylund K.M., Ruokonen H., Sorsa T., Heikkinen A.M., Meurman J.H., Ortiz F., Tervahartiala T., Furuholm J., Bostanci N. Association of the salivary triggering receptor expressed on myeloid cells/its ligand peptidoglycan recognition protein 1 axis with oral inflammation in kidney disease. J. Periodontol. 2018;89:117–129. doi: 10.1902/jop.2017.170218. PubMed DOI
Grassl N., Kulak N.A., Pichler G., Geyer P.E., Jung J., Schubert S., Sinitcyn P., Cox J., Mann M. Ultra-deep and quantitative saliva proteome reveals dynamics of the oral microbiome. Genome Med. 2016;8:44. doi: 10.1186/s13073-016-0293-0. PubMed DOI PMC
Golatowski C., Salazar M.G., Dhople V.M., Hammer E., Kocher T., Jehmlich N., Völker U. Comparative evaluation of saliva collection methods for proteome analysis. Clin. Chim. Acta. 2013;419:42–46. PubMed
Dawes C. Considerations in the development of diagnostic tests on saliva. Ann. N. Y. Acad. Sci. 1993;694:265–269. doi: 10.1111/j.1749-6632.1993.tb18359.x. PubMed DOI
Herr A.E., Hatch A.V., Throckmorton D.J., Tran H.M., Brennan J.S., Giannobile W.V., Singh A.K. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc. Natl. Acad. Sci. USA. 2007;104:5268–5273. doi: 10.1073/pnas.0607254104. PubMed DOI PMC
Dawes C., Wong D.T.W. Role of Saliva and Salivary Diagnostics in the Advancement of Oral Health. J. Dent. Res. 2019;98:133–141. doi: 10.1177/0022034518816961. PubMed DOI PMC
Schwarz W.H. The rheology of saliva. J. Dent. Res. 1987;66:660–666. doi: 10.1177/00220345870660S109. PubMed DOI
van der Reijden W.A., Veerman E.C., Amerongen A.V. Shear rate dependent viscoelastic behavior of human glandular salivas. Biorheology. 1993;30:141–152. doi: 10.3233/BIR-1993-30205. PubMed DOI
Helton K.L., Yager P. Interfacial instabilities affect microfluidic extraction of small molecules from non-Newtonian fluids. Lab Chip. 2007;7:1581–1588. doi: 10.1039/b709585f. PubMed DOI
Amado F.M.L., Vitorino R.M.P., Domingues P.M.D.N., Lobo M.J.C., Duarte J.A.R. Analysis of the human saliva proteome. Expert Rev. Proteomics. 2005;2:521–539. doi: 10.1586/14789450.2.4.521. PubMed DOI
Gug I.T., Tertis M., Hosu O., Cristea C. Salivary biomarkers detection: Analytical and immunological methods overview. TrAC-Trends Anal. Chem. 2019;113:301–316. doi: 10.1016/j.trac.2019.02.020. DOI
Rantonen P.J., Meurman J.H. Viscosity of whole saliva. Acta Odontol. Scand. 1998;56:210–214. doi: 10.1080/00016359850142817. PubMed DOI
Schramm W., Annesley T.M., Siegel G.J., Sackellares J.C., Smith R.H. Measurement of phenytoin and carbamazepine in an ultrafiltrate of saliva. Ther. Drug Monit. 1991;13:452–460. doi: 10.1097/00007691-199109000-00011. PubMed DOI
Helton K.L., Nelson K.E., Fu E., Yager P. Conditioning saliva for use in a microfluidic biosensor. Lab Chip. 2008;8:1847–1851. doi: 10.1039/b811150b. PubMed DOI
Spielmann N., Wong D.T. Saliva: diagnostics and therapeutic perspectives. Oral Dis. 2011;17:345–354. doi: 10.1111/j.1601-0825.2010.01773.x. PubMed DOI PMC
Schneyer L.H. Coagulation of salivary mucoid by freezing and thawing of saliva. Proc. Soc. Exp. Biol. Med. 1956;91:565–569. doi: 10.3181/00379727-91-22329. PubMed DOI
Al-Tarawneh S.K., Border M.B., Dibble C.F., Bencharit S. Defining salivary biomarkers using mass spectrometry-based proteomics: a systematic review. OMICS. 2011;15:353–361. doi: 10.1089/omi.2010.0134. PubMed DOI PMC
Ng V., Koh D., Fu Q., Chia S.-E. Effects of storage time on stability of salivary immunoglobulin A and lysozyme. Clin. Chim. Acta. 2003;338:131–134. doi: 10.1016/j.cccn.2003.08.012. PubMed DOI
Hart R.W., Mauk M.G., Liu C., Qiu X., Thompson J.A., Chen D., Malamud D., Abrams W.R., Bau H.H. Point-of-care oral-based diagnostics. Oral Dis. 2011;17:745–752. doi: 10.1111/j.1601-0825.2011.01808.x. PubMed DOI PMC
Mitsakakis K., Stumpf F., Strohmeier O., Klein V., Mark D., von Stetten F., Peham J.R., Herz C., Tawakoli P.N., Wegehaupt F., et al. Chair/bedside diagnosis of oral and respiratory tract infections, and identification of antibiotic resistances for personalised monitoring and treatment. Stud. Health Technol. Inform. 2016;224:61–66. PubMed
Wei F., Patel P., Liao W., Chaudhry K., Zhang L., Arellano-Garcia M., Hu S., Elashoff D., Zhou H., Shukla S., et al. Electrochemical sensor for multiplex biomarkers detection. Clin. Cancer Res. 2009;15:4446–4452. doi: 10.1158/1078-0432.CCR-09-0050. PubMed DOI PMC
Lin Y.-H., Wu C.-C., Peng Y.-S., Wu C.-W., Chang Y.-T., Chang K.-P. Detection of anti-p53 autoantibodies in saliva using microfluidic chips for the rapid screening of oral cancer. RSC Adv. 2018;8:15513–15521. doi: 10.1039/C7RA13734F. PubMed DOI PMC
Nie S., Henley W.H., Miller S.E., Zhang H., Mayer K.M., Dennis P.J., Oblath E.A., Alarie J.P., Wu Y., Oppenheim F.G., et al. An automated integrated platform for rapid and sensitive multiplexed protein profiling using human saliva samples. Lab Chip. 2014;14:1087–1098. doi: 10.1039/c3lc51303c. PubMed DOI PMC
Christodoulides N., Floriano P.N., Miller C.S., Ebersole J.L., Mohanty S., Dharshan P., Griffin M., Lennart A., Ballard K.L.M., King C.P., et al. Lab-on-a-chip methods for point-of-care measurements of salivary biomarkers of periodontitis. Ann. N. Y. Acad. Sci. 2007;1098:411–428. doi: 10.1196/annals.1384.035. PubMed DOI
Nwhator S.O., Ayanbadejo P.O., Umeizudike K.A., Opeodu O.I., Agbelusi G.A., Olamijulo J.A., Arowojolu M.O., Sorsa T., Babajide B.S., Opedun D.O. Clinical correlates of a lateral-flow immunoassay oral risk indicator. J. Periodontol. 2014;85:188–194. doi: 10.1902/jop.2013.130116. PubMed DOI
Kido H., Micic M., Smith D., Zoval J., Norton J., Madou M. A novel, compact disk-like centrifugal microfluidics system for cell lysis and sample homogenization. Colloids Surf. B Biointerfaces. 2007;58:44–51. doi: 10.1016/j.colsurfb.2007.03.015. PubMed DOI
Siegrist J., Gorkin R., Bastien M., Stewart G., Peytavi R., Kido H., Bergeron M., Madou M. Validation of a centrifugal microfluidic sample lysis and homogenization platform for nucleic acid extraction with clinical samples. Lab Chip. 2010;10:363–371. doi: 10.1039/B913219H. PubMed DOI
Focke M., Stumpf F., Faltin B., Reith P., Bamarni D., Wadle S., Müller C., Reinecke H., Schrenzel J., Francois P., et al. Microstructuring of polymer films for sensitive genotyping by real-time PCR on a centrifugal microfluidic platform. Lab Chip. 2010;10:2519–2526. doi: 10.1039/c004954a. PubMed DOI
Hin S., Paust N., Rombach M., Lueddecke J., Specht M., Zengerle R., Mitsakakis K. Minimizing Ethanol Carry-Over in Centrifugal Microfluidic Nucleic Acid Extraction by Advanced Bead Handling and Management of Diffusive Mass Transfer; Proceedings of the 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII; Berlin, Germany. 23–27 June 2019; pp. 130–133.
Cui F., Rhee M., Singh A., Tripathi A. Microfluidic Sample Preparation for Medical Diagnostics. Annu. Rev. Biomed. Eng. 2015;17:267–286. doi: 10.1146/annurev-bioeng-071114-040538. PubMed DOI
Kashket S., Ciociolo J.M. Gel electrophoresis salivary mucins. Electrophoresis. 1981;2:55–59. doi: 10.1002/elps.1150020109. DOI
Offner G.D., Troxler R.F. Heterogeneity of high-molecular-weight human salivary mucins. Adv. Dent. Res. 2000;14:69–75. doi: 10.1177/08959374000140011101. PubMed DOI
Takehara S., Yanagishita M., Podyma-Inoue K.A., Kawaguchi Y. Degradation of MUC7 and MUC5B in human saliva. PLoS ONE. 2013;8:e69059. doi: 10.1371/journal.pone.0069059. PubMed DOI PMC
Bruno L.S., Li X., Wang L., Soares R.V., Siqueira C.C., Oppenheim F.G., Troxler R.F., Offner G.D. Two-hybrid analysis of human salivary mucin MUC7 interactions. Biochim. Biophys. Acta. 2005;1746:65–72. doi: 10.1016/j.bbamcr.2005.08.007. PubMed DOI
Iontcheva I., Oppenheim F.G., Troxler R.F. Human salivary mucin MG1 selectively forms heterotypic complexes with amylase, proline-rich proteins, statherin, and histatins. J. Dent. Res. 1997;76:734–743. doi: 10.1177/00220345970760030501. PubMed DOI
Papale M., Pedicillo M.C., Di Paolo S., Thatcher B.J., Lo Muzio L., Bufo P., Rocchetti M.T., Centra M., Ranieri E., Gesualdo L. Saliva analysis by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF/MS): from sample collection to data analysis. Clin. Chem. Lab. Med. 2008;46:89–99. doi: 10.1515/CCLM.2008.013. PubMed DOI