Ultrasound-Driven Defect Engineering in TiO2-x Nanotubes─Toward Highly Efficient Platinum Single Atom-Enhanced Photocatalytic Water Splitting
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37490013
PubMed Central
PMC10416212
DOI
10.1021/acsami.3c04811
Knihovny.cz E-zdroje
- Klíčová slova
- TiO2 nanotube arrays (TNTs), hydrogen evolution (H2), photocatalysis, reduced TiO2, single-atom catalysts,
- Publikační typ
- časopisecké články MeSH
Single-atom catalysts (SACs) have demonstrated superior catalytic activity and selectivity compared to nanoparticle catalysts due to their high reactivity and atom efficiency. However, stabilizing SACs within hosting substrates and their controllable loading preventing single atom clustering remain the key challenges in this field. Moreover, the direct comparison of (co-) catalytic effect of single atoms vs nanoparticles is still highly challenging. Here, we present a novel ultrasound-driven strategy for stabilizing Pt single-atomic sites over highly ordered TiO2 nanotubes. This controllable low-temperature defect engineering enables entrapment of platinum single atoms and controlling their content through the reaction time of consequent chemical impregnation. The novel methodology enables achieving nearly 50 times higher normalized hydrogen evolution compared to pristine titania nanotubes. Moreover, the developed procedure allows the decoration of titania also with ultrasmall nanoparticles through a longer impregnation time of the substrate in a very dilute hexachloroplatinic acid solution. The comparison shows a 10 times higher normalized hydrogen production of platinum single atoms compared to nanoparticles. The mechanistic study shows that the novel approach creates homogeneously distributed defects, such as oxygen vacancies and Ti3+ species, which effectively trap and stabilize Pt2+ and Pt4+ single atoms. The optimized platinum single-atom photocatalyst shows excellent performance of photocatalytic water splitting and hydrogen evolution under one sun solar-simulated light, with TOF values being one order of magnitude higher compared to those of traditional thermal reduction-based methods. The single-atom engineering based on the creation of ultrasound-triggered chemical traps provides a pathway for controllable assembling stable and highly active single-atomic site catalysts on metal oxide support layers.
Zobrazit více v PubMed
Spillias S.; Kareiva P.; Ruckelshaus M.; Mcdonald-madden E. Renewable Energy Targets May Undermine Their Sustainability. Nat. Clim. Change 2020, 10, 974–976. 10.1038/s41558-020-00939-x. DOI
Xiao M.; Zhang L.; Luo B.; Lyu M.; Wang Z.; Huang H.; Wang S.; Du A.; Wang L. Molten-Salt-Mediated Synthesis Of An Atomic Nickel Co-Catalyst On Tio2 For Improved Photocatalytic H2 Evolution. Am. Chem. 2020, 132, 7297–7301. 10.1002/ange.202001148. PubMed DOI
Shahrezaei M.; Hejazi S. M. H.; Rambabu Y.; Vavrecka M.; Bakandritsos A.; Oezkan S.; Zboril R.; Schmuki P.; Naldoni A.; Kment S. Multi-Leg TiO2 Nanotube Photoelectrodes Modified by Platinized Cyanographene with Enhanced Photoelectrochemical Performance. Catalysts 2020, 10, 717.10.3390/catal10060717. DOI
Zeng R.; Lian K.; Su B.; Lu L.; Lin J.; Tang D.; Lin S.; Wang X. Versatile Synthesis of Hollow Metal Sulfides via Reverse Cation Exchange Reactions for Photocatalytic CO2 Reduction. Angew. Chem., Int. Ed. 2021, 60, 25055–25062. 10.1002/anie.202110670. PubMed DOI
Polshettiwar V.; Varma R. S. Green Chemistry by nano-catalysis. Green Chem. 2010, 12, 743–775. 10.1039/B921171C. DOI
Cao C.; Song W. Single-Atom Catalysts for Thermal Heterogeneous Catalysis in Liquid: Recent Progress and Future Perspective. ACS Mater. Lett. 2020, 2, 1653–1661. 10.1021/acsmaterialslett.0c00349. DOI
Li L.; Chang X.; Lin X.; Zhao Z.; Gong J. Theoretical Insights into Single-Atom Catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178. 10.1039/D0CS00795A. PubMed DOI
Xiao M.; Zhu J.; Li G.; Li N.; Li S.; Cano Z. P.; Ma L.; Cui P.; Xu P.; Jiang G.; Jin H.; Wang S.; Wu T.; Lu J.; Yu A.; Su D.; Chen Z. A Single-Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angew. Chem., Int. Ed. 2019, 131, 9742–9747. 10.1002/ange.201905241. PubMed DOI
Tyo E. C.; Vajda S. Catalysis by Clusters with Precise Numbers of Atoms. Nat. Nanotechnol. 2015, 10, 577–588. 10.1038/nnano.2015.140. PubMed DOI
Han J.; Lu J.; Wang M.; Wang Y.; Wang F. Single Atom Alloy Preparation and Applications in Heterogeneous Catalysis. Chin. J. Chem. 2019, 37, 977–988. 10.1002/cjoc.201900185. DOI
Zhang H.; Liu G.; Shi L.; Ye J. Single-Atom Catalysts: Emerging Multifunctional Materials in Heterogeneous Catalysis. Adv. Energy Mater. 2018, 8, 1701343.10.1002/aenm.201701343. DOI
Li J.; Huang H.; Liu P.; Song X.; Mei D.; Tang Y.; Wang X.; Zhong C. Metal-Organic Framework Encapsulated Single-Atom Pt Catalysts for Efficient Photocatalytic Hydrogen Evolution. J. Catal. 2019, 375, 351–360. 10.1016/j.jcat.2019.06.024. DOI
Bie C.; Wang L.; Yu J. Challenges for Photocatalytic Overall Water Splitting. Chem 2022, 8, 1567–1574. 10.1016/j.chempr.2022.04.013. DOI
Hwang I.; Mazare A.; Will J.; Yokosawa T.; Spiecker E.; Schmuki P. Inhibition of H2 and O2 Recombination: The Key to a Most Efficient Single-Atom Co-Catalyst for Photocatalytic H2 Evolution from Plain Water. Adv. Funct. Mater. 2022, 32, 2207849.10.1002/adfm.202207849. DOI
Yan H.; Cheng H.; Yi H.; Lin Y.; Yao T.; Wang C.; Li J.; Wei S.; Lu J. Single-Atom Pd1/Graphene Catalyst Achieved by Atomic Layer Deposition: Remarkable Performance in Selective Hydrogenation of 1,3-Butadiene. J. Am. Chem. Soc. 2015, 137, 10484–10487. 10.1021/jacs.5b06485. PubMed DOI
Sun S.; Zhang G.; Gauquelin N.; Chen N.; Zhou J.; Yang S.; Chen W.; Meng X.; Geng D.; Banis M. N.; Li R.; Ye S.; Knights S.; Botton G. A.; Sham T.; Sun X. Single-Atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Sci. Rep. 2013, 3, 1775.10.1038/srep01775. DOI
Wang X.; Jin B.; Jin Y.; Wu T.; Ma L.; Liang X. Supported Single Fe Atoms Prepared via Atomic Layer Deposition for Catalytic Reactions. ACS Appl. Nano Mater. 2020, 3, 2867–2874. 10.1021/acsanm.0c00146. DOI
Lin J.; Qiao B.; Liu J.; Huang Y.; Wang A.; Li L.; Zhang W.; Allard L. F.; Wang X.; Zhang T. Design of a Highly Active Ir/Fe(OH)x Catalyst: Versatile Application of Pt-Group Metals for the Preferential Oxidation of Carbon Monoxide. Angew. Chem., Int. Ed. 2012, 51, 2920–2924. 10.1002/anie.201106702. PubMed DOI
Sun L.; Cao L.; Su Y.; Wang C.; Lin J.; Wang X. Ru1/FeOx Single-Atom Catalyst with Dual Active Sites for Water Gas Shift Reaction without Methanation. Appl. Catal., B 2022, 318, 12184110.1016/j.apcatb.2022.121841. DOI
Liu P.; Zhao Y.; Qin R.; Mo S.; Chen G.; Gu L.; Chevrier D. M.; Zhang P.; Guo Q.; Zang D.; Wu B.; Fu G.; Zheng N. Photochemical Route for Synthesizing Atomically Dispersed Palladium Catalysts. Science 2016, 352, 797–800. 10.1126/science.aaf5251. PubMed DOI
Hai X.; Xi S.; Mitchell S.; Harrath K.; Xu H.; Akl D. F.; Kong D.; Li J.; Li Z.; Sun T.; Yang H.; Cui Y.; Su C.; Zhao X.; Li J.; Pérez-Ramírez J.; Lu J. Scalable Two-Step Annealing Method for Preparing Ultra-High-Density Single-Atom Catalyst Libraries. Nat. Nanotechnol. 2022, 17, 174–181. 10.1038/s41565-021-01022-y. PubMed DOI
Shi B.; Li H.; Fu X.; Zhao C.; Li M.; Liu M.; Yan W.; Yang H. Fe Single-Atom Catalyst for Cost-Effective yet Highly Efficient Heterogeneous Fenton Catalysis. ACS Appl. Mater. Interfaces 2022, 14, 53767–53776. 10.1021/acsami.2c15232. PubMed DOI
Hejazi S.; Mohajernia S.; Osuagwu B.; Zoppellaro G.; Andryskova P.; Tomanec O.; Kment S.; Zbořil R.; Schmuki P. On the Controlled Loading of Single Platinum Atoms as a Co-Catalyst on TiO2 Anatase for Optimized Photocatalytic H2 Generation. Adv. Mater. 2020, 32, 1908505.10.1002/adma.201908505. PubMed DOI
Yang X.; Wang A.; Qiao B.; Li J.; Liu J.; Zhang T. Single-Atom Catalysts: A New Frontier. Acc. Chem. Res. 2013, 46, 1740–1748. 10.1021/ar300361m. PubMed DOI
Liu L.; Corma A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. 10.1021/acs.chemrev.7b00776. PubMed DOI PMC
Lin F.; Boettcher S. W. Adaptive Semiconductor/Electrocatalyst Junctions in Water-Splitting Photoanodes. Nat. Mater. 2014, 13, 81–86. 10.1038/nmat3811. PubMed DOI
Zhao Y.; Hoivik N.; Wang K. Recent Advance on Engineering Titanium Dioxide Nanotubes for Photochemical and Photoelectrochemical Water Splitting. Nano Energy 2016, 30, 728–744. 10.1016/j.nanoen.2016.09.027. DOI
Hsieh P. Y.; Chiu Y. H.; Lai T. H.; Fang M. J.; Wang Y. T.; Hsu Y. J. TiO2 Nanowire-Supported Sulfide Hybrid Photocatalysts for Durable Solar Hydrogen Production. ACS Appl. Mater. Interfaces 2019, 11, 3006–3015. 10.1021/acsami.8b17858. PubMed DOI
Zhou W.; Li W.; Wang J. Q.; Qu Y.; Yang Y.; Xie Y.; Zhang K.; Wang L.; Fu H.; Zhao D. Ordered Mesoporous Black TiO2 as Highly Efficient Hydrogen Evolution Photocatalyst. J. Am. Chem. Soc. 2014, 136, 9280–9283. 10.1021/ja504802q. PubMed DOI
Wu X.; Li J.; Xie S.; Duan P.; Zhang H.; Feng J.; Zhang Q.; Cheng J.; Wang Y. Selectivity Control in Photocatalytic Valorization of Biomass-Derived Platform Compounds by Surface Engineering of Titanium Oxide. Chem 2020, 6, 3038–3053. 10.1016/j.chempr.2020.08.014. DOI
Guo Q.; Zhou C.; Ma Z.; Ren Z.; Fan H.; Yang X. Elementary Photocatalytic Chemistry on TiO2 Surfaces. Chem. Soc. Rev. 2016, 45, 3701–3730. 10.1039/C5CS00448A. PubMed DOI
Hejazi S. H.; Shahrezaei M.; Błoński P.; Allieta M.; Sheverdyaeva P. M.; Moras P.; Bad’ura Z.; Kalytchuk S.; Mohammadi E.; Zbořil R.; Kment Š.; Otyepka M.; Naldoni A.; Fornasiero P. Defect Engineering over Anisotropic Brookite toward Substrate-Specific Photo-Oxidation of Alcohols. Chem Catal. 2022, 2, 1177–1190. 10.1016/j.checat.2022.03.015. DOI
Naldoni A.; Altomare M.; Zoppellaro G.; Liu N.; Kment Š.; Zbořil R.; Schmuki P. Photocatalysis with Reduced TiO2: From Black TiO2 to Cocatalyst-Free Hydrogen Production. ACS Catal. 2019, 9, 345–364. 10.1021/acscatal.8b04068. PubMed DOI PMC
Shahrezaei M.; Babaluo A. A.; Habibzadeh S.; Haghighi M. Photocatalytic Properties of 1D TiO2 Nanostructures Prepared from Polyacrylamide Gel–TiO2 Nanopowders by Hydrothermal Synthesis. Eur. J. Inorg. Chem. 2017, 2017, 694–703. 10.1002/ejic.201600820. DOI
Roy P.; Berger S.; Schmuki P. TiO2 Nanotubes: Synthesis and Applications. Angew. Chem., Int. Ed. 2011, 50, 2904–2939. 10.1002/anie.201001374. PubMed DOI
Shahrezaei M.; Habibzadeh S.; Babaluo A. A.; Hosseinkhani H.; Haghighi M.; Hasanzadeh A.; Tahmasebpour R. Study of Synthesis Parameters and Photocatalytic Activity of TiO2 Nanostructures. J. Exp. Nanosci. 2017, 12, 45–61. 10.1080/17458080.2016.1258495. DOI
Ge M.; Cao C.; Huang J.; Li S.; Chen Z.; Zhang K. Q.; Al-Deyab S. S.; Lai Y. A Review of One-Dimensional TiO2 Nanostructured Materials for Environmental and Energy Applications. J. Mater. Chem. A 2016, 4, 6772–6801. 10.1039/C5TA09323F. DOI
Dong J.; Huang J.; Wang A.; Biesold-McGee G. V.; Zhang X.; Gao S.; Wang S.; Lai Y.; Lin Z. Vertically-Aligned Pt-Decorated MoS2 Nanosheets Coated on TiO2 Nanotube Arrays Enable High-Efficiency Solar-Light Energy Utilization for Photocatalysis and Self-Cleaning SERS Devices. Nano Energy 2020, 71, 10457910.1016/j.nanoen.2020.104579. DOI
Xu T.; Zheng H.; Zhang P. Isolated Pt Single Atomic Sites Anchored on Nanoporous TiO2 Film for Highly Efficient Photocatalytic Degradation of Low Concentration Toluene. J. Hazard. Mater. 2020, 388, 12174610.1016/j.jhazmat.2019.121746. PubMed DOI
Naldoni A.; Arienzo M. D.; Altomare M.; Marelli M.; Scotti R.; Morazzoni F.; Selli E.; Santo V. D. Pt and Au/TiO2 Photocatalysts for Methanol Reforming: Role of Metal Nanoparticles in Tuning Charge Trapping Properties and Photoefficiency. Appl. Catal., B 2013, 130–131, 239–248. 10.1016/j.apcatb.2012.11.006. DOI
Ye M.; Gong J.; Lai Y.; Lin C.; Lin Z. High-Efficiency Photoelectrocatalytic Hydrogen Generation Enabled by Palladium Quantum Dots-Sensitized TiO2 Nanotube Arrays. J. Am. Chem. Soc. 2012, 134, 15720–15723. 10.1021/ja307449z. PubMed DOI
Wang Q.; Cai J.; Biesold-McGee G. V.; Huang J.; Ng Y. H.; Sun H.; Wang J.; Lai Y.; Lin Z. Silk Fibroin-Derived Nitrogen-Doped Carbon Quantum Dots Anchored on TiO2 Nanotube Arrays for Heterogeneous Photocatalytic Degradation and Water Splitting. Nano Energy 2020, 78, 10531310.1016/j.nanoen.2020.105313. DOI
Yang J.; Wang D.; Han H.; Li C. A. N. Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Acc. Chem. Res. 2013, 46, 1900–1909. 10.1021/ar300227e. PubMed DOI
Yoo M.; Yu Y. S.; Ha H.; Lee S.; Choi J. S.; Oh S.; Kang E.; Choi H.; An H.; Lee K. S.; Park J. Y.; Celestre R.; Marcus M. A.; Nowrouzi K.; Taube D.; Shapiro D. A.; Jung W.; Kim C.; Kim H. Y. A Tailored Oxide Interface Creates Dense Pt Single-Atom Catalysts with High Catalytic Activity. Energy Environ. Sci. 2020, 13, 1231–1239. 10.1039/C9EE03492G. DOI
Wu S. M.; Hwang I.; Osuagwu B.; Will J.; Wu Z.; Sarma B. B.; Pu F. F.; Wang L. Y.; Badura Z.; Zoppellaro G.; Spiecker E.; Schmuki P. Fluorine Aided Stabilization of Pt Single Atoms on TiO2 Nanosheets and Strongly Enhanced Photocatalytic H2 Evolution. ACS Catal. 2023, 13, 33–41. 10.1021/acscatal.2c04481. DOI
Lee B. H.; Park S.; Kim M.; Sinha A. K.; Lee S. C.; Jung E.; Chang W. J.; Lee K. S.; Kim J. H.; Cho S. P.; Kim H.; Nam K. T.; Hyeon T. Reversible and Cooperative Photoactivation of Single-Atom Cu/TiO2 Photocatalysts. Nat. Mater. 2019, 18, 620–626. 10.1038/s41563-019-0344-1. PubMed DOI
Shu J.; Qiu Z.; Lv S.; Zhang K.; Tang D. Plasmonic Enhancement Coupling with Defect-Engineered TiO2-x: A Mode for Sensitive Photoelectrochemical Biosensing. Anal. Chem. 2018, 90, 2425–2429. 10.1021/acs.analchem.7b05296. PubMed DOI
Cai G.; Yu Z.; Ren R.; Tang D. Exciton-Plasmon Interaction between AuNPs/Graphene Nanohybrids and CdS Quantum Dots/TiO2 for Photoelectrochemical Aptasensing of Prostate-Specific Antigen. ACS Sens. 2018, 3, 632–639. 10.1021/acssensors.7b00899. PubMed DOI
Kment S.; Riboni F.; Pausova S.; Wang L.; Wang L.; Han H.; Hubicka Z.; Krysa J.; Schmuki P.; Zboril R. Photoanodes Based on TiO2 and α-Fe2O3 for Solar Water Splitting-Superior Role of 1D Nanoarchitectures and of Combined Heterostructures. Chem. Soc. Rev. 2017, 46, 3716–3769. 10.1039/C6CS00015K. PubMed DOI
Zhou X.; Hwang I.; Tomanec O.; Fehn D.; Mazare A.; Zboril R.; Meyer K.; Schmuki P. Advanced Photocatalysts: Pinning Single Atom Co-Catalysts on Titania Nanotubes. Adv. Funct. Mater. 2021, 31, 2102843.10.1002/adfm.202102843. DOI
Wu Z.; Hwang I.; Cha G.; Qin S.; Tomanec O.; Badura Z.; Kment S.; Zboril R.; Schmuki P. Optimized Pt Single Atom Harvesting on TiO2 Nanotubes Towards a Most Efficient Photocatalyst. Small 2022, 18, 2104892.10.1002/smll.202104892. PubMed DOI
Naldoni A.; Allieta M.; Santangelo S.; Marelli M.; Fabbri F.; Cappelli S.; Bianchi C. L.; Psaro R.; Dal Santo V. Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603. 10.1021/ja3012676. PubMed DOI
Eom J.; Lim S.; Lee S.; Ryu W.; Kwon H. Black Titanium Oxide Nanoarray Electrodes for High Rate Li-Ion Microbatteries. J. Mater. Chem. A 2015, 3, 11183–11188. 10.1039/C5TA01718A. DOI
Cui H.; Zhao W.; Yang C.; Yin H.; Lin T.; Shan Y.; Xie Y.; Gu H.; Huang F. Black TiO2 Nanotube Arrays for High-Efficiency Photoelectrochemical Water-Splitting. J. Mater. Chem. A 2014, 2, 8612–8616. 10.1039/C4TA00176A. DOI
Xiong L.; Li J.; Yang B.; Yu Y. Ti3+ in the Surface of Titanium Dioxide: Generation, Properties and Photocatalytic Application. J. Nanomater. 2012, 2012, 831524.10.1155/2012/831524. DOI
Jiang X.; Zhang Y.; Jiang J.; Rong Y.; Wang Y.; Wu Y.; Pan C. Characterization of Oxygen Vacancy Associates within Hydrogenated TiO2: A Positron Annihilation Study. J. Phys. Chem. C 2012, 116, 22619–22624. 10.1021/jp307573c. DOI
Yew R.; Karuturi S. K.; Liu J.; Tan H. H.; Wu Y.; Jagadish C. Exploiting Defects in TiO2 Inverse Opal for Enhanced Photoelectrochemical Water Splitting. Opt. Express 2019, 27, 761–773. 10.1364/OE.27.000761. PubMed DOI
Lamers M.; Fiechter S.; Friedrich D.; Abdi F. F.; Van De Krol R. Formation and Suppression of Defects during Heat Treatment of BiVO4 Photoanodes for Solar Water Splitting. J. Mater. Chem. A 2018, 6, 18694–18700. 10.1039/C8TA06269B. DOI
Li L.; Yan J.; Wang T.; Zhao Z.; Zhang J.; Gong J.; Guan N. Sub-10 nm Rutile Titanium Dioxide Nanoparticles for Efficient Visible-Light-Driven Photocatalytic Hydrogen Production. Nat. Commun. 2015, 6, 5881.10.1038/ncomms6881. PubMed DOI
Ghosh P.; Azimi M. E. Numerical Calculation of Effective Permittivity of Lossless Dielectric Mixtures Using Boundary Integral Method. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 975–981. 10.1109/94.368637. DOI
Zhu L.; Ma H.; Han H.; Fu Y.; Ma C.; Yu Z.; Dong X. Black TiO2 Nanotube Arrays Fabricated by Electrochemical Self-Doping and Their Photoelectrochemical Performance. RSC Adv. 2018, 8, 18992–19000. 10.1039/C8RA02983K. PubMed DOI PMC
Wei L.; Yang Y.; Xia X.; Fan R.; Su T.; Shi Y.; Yu J.; Li L.; Jiang Y. Band Edge Movement in Dye Sensitized Sm-Doped TiO2 Solar Cells: A Study by Variable Temperature Spectroelectrochemistry. RSC Adv. 2015, 5, 70512–70521. 10.1039/C5RA15815J. DOI
Kolaei M.; Tayebi M.; Masoumi Z.; Lee B. K. A Novel Approach for Improving Photoelectrochemical Water Splitting Performance of ZnO-CdS Photoanodes: Unveiling the Effect of Surface Roughness of ZnO Nanorods on Distribution of CdS Nanoparticles. J. Alloys Compd. 2022, 906, 16431410.1016/j.jallcom.2022.164314. DOI
Wang H.; Liu J. X.; Allard L. F.; Lee S.; Liu J.; Li H.; Wang J.; Wang J.; Oh S. H.; Li W.; Flytzani-Stephanopoulos M.; Shen M.; Goldsmith B. R.; Yang M. Surpassing the Single-Atom Catalytic Activity Limit through Paired Pt-O-Pt Ensemble Built from Isolated Pt1 Atoms. Nat. Commun. 2019, 10, 3808.10.1038/s41467-019-11856-9. PubMed DOI PMC
Lang R.; Xi W.; Liu J.; Cui Y.; Li T.; Lee A. F.; Chen F.; Chen Y.; Li L.; Li L.; Lin J.; Miao S.; Liu X.; Wang A.; Wang X.; Luo J.; Qiao B.; Li J.; Zhang T. Non Defect-Stabilized Thermally Stable Single-Atom Catalyst. Nat. Commun. 2019, 10, 234.10.1038/s41467-018-08136-3. PubMed DOI PMC
Daelman N.; Capdevila-cortada M.; López N. Dynamic Charge and Oxidation State of Pt/CeO2 Single-Atom Catalysts. Nat. Mater. 2019, 18, 1215–1221. 10.1038/s41563-019-0444-y. PubMed DOI
Hang Li Y.; Xing J.; Jia Chen Z.; Li Z.; Tian F.; Rong Zheng L.; Feng Wang H.; Hu P.; Jun Zhao H.; Gui Yang H. Unidirectional Suppression of Hydrogen Oxidation on Oxidized Platinum Clusters. Nat. Commun. 2013, 4, 2500.10.1038/ncomms3500. PubMed DOI
Lian Z.; Wang W.; Li G.; Tian F.; Schanze K. S.; Li H. Pt-Enhanced Mesoporous Ti3+/TiO2 with Rapid Bulk to Surface Electron Transfer for Photocatalytic Hydrogen Evolution. ACS Appl. Mater. Interfaces 2017, 9, 16959–16966. 10.1021/acsami.6b11494. PubMed DOI
Lakshmanareddy N.; Rao V. N.; Cheralathan K. K.; Subramaniam E. P.; Shankar M. V. Pt/TiO2 Nanotube Photocatalyst – Effect of Synthesis Methods on Valance State of Pt and Its Influence on Hydrogen Production and Dye Degradation. J. Colloid Interface Sci. 2019, 538, 83–98. 10.1016/j.jcis.2018.11.077. PubMed DOI