Pd single atoms on g-C3N4 photocatalysts: minimum loading for maximum activity
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39950063
PubMed Central
PMC11816733
DOI
10.1039/d4sc08589b
PII: d4sc08589b
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Noble metal single atoms (SAs) on semiconductors are increasingly explored as co-catalysts to enhance the efficiency of photocatalytic hydrogen production. In this study, we introduce a "spontaneous deposition" approach to anchor Pd SAs onto graphitic carbon nitride (g-C3N4) using a highly dilute tetraaminepalladium(ii) chloride precursor. Maximized photocatalytic activity and significantly reduced charge transfer resistance can be achieved with a remarkably low Pd loading of 0.05 wt% using this approach. The resulting Pd SA-modified g-C3N4 demonstrates a remarkable hydrogen production efficiency of 0.24 mmol h-1 mg-1 Pd, which is >50 times larger than that of Pd nanoparticles deposited on g-C3N4 via conventional photodeposition. This significant enhancement in catalytic performance is attributed to improved electron transfer facilitated by the optimal coordination of Pd SAs within the g-C3N4 structure.
Zobrazit více v PubMed
Li Y. Tsang S. C. E. Recent progress and strategies for enhancing photocatalytic water splitting. Mater. Today Sustain. 2020;9:100032.
Nishioka S. Osterloh F. E. Wang X. Mallouk T. E. Maeda K. Photocatalytic water splitting. Nat. Rev. Methods Primers. 2023;3:42. doi: 10.1038/s43586-023-00226-x. DOI
Nakata K. Fujishima A. TiO2 photocatalysis: design and applications. J. Photochem. Photobiol., C. 2012;13:169–189. doi: 10.1016/j.jphotochemrev.2012.06.001. DOI
Roy P. Berger S. Schmuki P. TiO2 nanotubes: synthesis and applications. Angew. Chem., Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI
Peiris S. de Silva H. B. Ranasinghe K. N. Bandara S. V. Perera I. R. Recent development and future prospects of TiO2 photocatalysis. J. Chin. Chem. Soc. 2021;68:738–769. doi: 10.1002/jccs.202000465. DOI
Hernández-Alonso M. D. Fresno F. Suárez S. Coronado J. M. Development of alternative photocatalysts to TiO 2: challenges and opportunities. Energy Environ. Sci. 2009;2:1231–1257. doi: 10.1039/B907933E. DOI
Bhanderi D. Lakhani P. Modi C. K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: a comprehensive review. RSC sustain. 2024;2:265–287. doi: 10.1039/D3SU00382E. DOI
Wang Q. Li Y. Huang F. Song S. Ai G. Xin X. Zhao B. Zheng Y. Zhang Z. Recent advances in g-C3N4-based materials and their application in energy and environmental sustainability. Molecules. 2023;28:432. doi: 10.3390/molecules28010432. PubMed DOI PMC
Pei J. Li H. Zhuang S. Zhang D. Yu D. Recent Advances in g-C3N4 Photocatalysts: A Review of Reaction Parameters, Structure Design and Exfoliation Methods. Catalysts. 2023;13:1402. doi: 10.3390/catal13111402. DOI
Zheng Y. Jiao Y. Jaroniec M. Qiao S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 2015;54:52–65. doi: 10.1002/anie.201407031. PubMed DOI
Gao C. Low J. Long R. Kong T. Zhu J. Xiong Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 2020;120:12175–12216. doi: 10.1021/acs.chemrev.9b00840. PubMed DOI
Xia Y. Sayed M. Zhang L. Cheng B. Yu J. Single-atom heterogeneous photocatalysts. Chem Catal. 2021;1:1173–1214. doi: 10.1016/j.checat.2021.08.009. DOI
Kerketta U. Tesler A. B. Schmuki P. Single-atom Co-catalysts employed in titanium dioxide photocatalysis. Catalysts. 2022;12:1223. doi: 10.3390/catal12101223. DOI
Akinaga Y. Kawawaki T. Kameko H. Yamazaki Y. Yamazaki K. Nakayasu Y. Kato K. Tanaka Y. Hanindriyo A. T. Takagi M. Metal Single-Atom Cocatalyst on Carbon Nitride for the Photocatalytic Hydrogen Evolution Reaction: Effects of Metal Species. Adv. Funct. Mater. 2023;33:2303321. doi: 10.1002/adfm.202303321. DOI
Jia X. Zhao J. Zhang W. Fu X. Long J. Gu Q. Gao Z. Single-Atomic Pd Embedded 2D g-C3N4 Homogeneous Catalyst Analogues for Efficient LMCT Induced Full-Visible-Light Photocatalytic Suzuki Coupling. ChemistrySelect. 2022;7:e202202973. doi: 10.1002/slct.202202973. DOI
Hu F. Leng L. Zhang M. Chen W. Yu Y. Wang J. Horton J. H. Li Z. Direct synthesis of atomically dispersed palladium atoms supported on graphitic carbon nitride for efficient selective hydrogenation reactions. ACS Appl. Mater. Interfaces. 2020;12:54146–54154. doi: 10.1021/acsami.0c13881. PubMed DOI
Chen Z. Mitchell S. Vorobyeva E. Leary R. K. Hauert R. Furnival T. Ramasse Q. M. Thomas J. M. Midgley P. A. Dontsova D. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 2017;27:1605785. doi: 10.1002/adfm.201605785. DOI
Xu R. Xu B. You X. Shao D. Gao G. Li F. Wang X.-L. Yao Y.-F. Preparation of single-atom palladium catalysts with high photocatalytic hydrogen production performance by means of photochemical reactions conducted with frozen precursor solutions. J. Mater. Chem. A. 2023;11:11202–11209. doi: 10.1039/D3TA00098B. DOI
Ren M. Zhang X. Liu Y. Yang G. Qin L. Meng J. Guo Y. Yang Y. Interlayer palladium-single-atom-coordinated cyano-group-rich graphitic carbon nitride for enhanced photocatalytic hydrogen production performance. ACS Catal. 2022;12:5077–5093. doi: 10.1021/acscatal.2c00427. DOI
Cao S. Li H. Tong T. Chen H. C. Yu A. Yu J. Chen H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018;28:1802169. doi: 10.1002/adfm.201802169. DOI
Suja P. John J. Rajan T. Anilkumar G. M. Yamaguchi T. Pillai S. C. Hareesh U. Graphitic carbon nitride (gC 3 N 4) based heterogeneous single atom catalysts: synthesis, characterisation and catalytic applications. J. Mater. Chem. A. 2023;11:8599–8646. doi: 10.1039/D2TA09776A. DOI
Li S. Kan Z. Wang H. Bai J. Liu Y. Liu S. Wu Y. Single-atom photo-catalysts: synthesis, characterization, and applications. Nano Mater. Sci. 2023:284–304.
Wu S. M. Schmuki P. Single Atom Cocatalysts in Photocatalysis. Adv. Mater. 2024:2414889. doi: 10.1002/adma.202414889. PubMed DOI PMC
Wang Y. Qin S. Denisov N. Kim H. Bad'ura Z. Sarma B. B. Schmuki P. Reactive Deposition Versus Strong Electrostatic Adsorption (SEA): A Key to Highly Active Single Atom Co-Catalysts in Photocatalytic H2 Generation. Adv. Mater. 2023;35:2211814. doi: 10.1002/adma.202211814. PubMed DOI
Qin S. Will J. Kim H. Denisov N. Carl S. Spiecker E. Schmuki P. Single atoms in photocatalysis: low loading is good enough. ACS Energy Lett. 2023;8:1209–1214. doi: 10.1021/acsenergylett.2c02801. DOI
Cha G. Mazare A. Hwang I. Denisov N. Will J. Yokosawa T. Badura Z. Zoppellaro G. Tesler A. B. Spiecker E. A facile “dark”-deposition approach for Pt single-atom trapping on facetted anatase TiO2 nanoflakes and use in photocatalytic H2 generation. Electrochim. Acta. 2022;412:140129. doi: 10.1016/j.electacta.2022.140129. DOI
Wu Z. Hwang I. Cha G. Qin S. Tomanec O. Badura Z. Kment S. Zboril R. Schmuki P. Optimized Pt single atom harvesting on TiO2 nanotubes—Towards a most efficient photocatalyst. Small. 2022;18:2104892. doi: 10.1002/smll.202104892. PubMed DOI
Torres-Pinto A. Sampaio M. J. Silva C. G. Faria J. L. Silva A. M. Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds. Appl. Catal., B. 2019;252:128–137. doi: 10.1016/j.apcatb.2019.03.040. DOI
Marchal C. Cottineau T. Méndez-Medrano M. G. Colbeau-Justin C. Caps V. Keller V. Au/TiO2–gC3N4 nanocomposites for enhanced photocatalytic H2 production from water under visible light irradiation with very low quantities of sacrificial agents. Adv. Energy Mater. 2018;8:1702142. doi: 10.1002/aenm.201702142. DOI
Karimi-Nazarabad M. Ahmadzadeh H. Goharshadi E. K. Porous perovskite-lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4. Sol. Energy. 2021;227:426–437. doi: 10.1016/j.solener.2021.09.028. DOI
Fina F. Callear S. K. Carins G. M. Irvine J. T. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 2015;27:2612–2618. doi: 10.1021/acs.chemmater.5b00411. DOI
Wang N. Wang J. Hu J. Lu X. Sun J. Shi F. Liu Z.-H. Lei Z. Jiang R. Design of palladium-doped g-C3N4 for enhanced photocatalytic activity toward hydrogen evolution reaction. ACS Appl. Energy Mater. 2018;1:2866–2873. doi: 10.1021/acsaem.8b00526. DOI
Li L. Dai X. Lu M. Guo C. Wabaidur S. M. Wu X.-L. Lou Z. Zhong Y. Hu Y. Electron-enriched single-Pd-sites on g-C3N4 nanosheets achieved by in-situ anchoring twinned Pd nanoparticles for efficient CO2 photoreduction. Adv. Powder Mater. 2024;3:100170. doi: 10.1016/j.apmate.2024.100170. DOI
Mondal S. Sahoo L. Banoo M. Vaishnav Y. Prabhakaran Vinod C. Gautam U. K. Enhancing the Catalytic Activity of Pd Nanocrystals towards Suzuki Cross-Coupling by g-C3N4 Photosensitization. ChemNanoMat. 2024;10:e202300451. doi: 10.1002/cnma.202300451. DOI
Wu S.-M. Wu L. Denisov N. Badura Z. Zoppellaro G. Yang X.-Y. Schmuki P. Pt Single Atoms on TiO2 Can Catalyze Water Oxidation in Photoelectrochemical Experiments. J. Am. Chem. Soc. 2024:16363–16368. doi: 10.1021/jacs.4c03319. PubMed DOI
Liu P. Huang Z. Gao X. Hong X. Zhu J. Wang G. Wu Y. Zeng J. Zheng X. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv. Mater. 2022;34:2200057. doi: 10.1002/adma.202200057. PubMed DOI
Ho P. H. Woo J.-W. Ilmasani R. F. Han J. Olsson L. The role of Pd–Pt interactions in the oxidation and sulfur resistance of bimetallic Pd–Pt/γ-Al2O3 diesel oxidation catalysts. Ind. Eng. Chem. Res. 2021;60:6596–6612. doi: 10.1021/acs.iecr.0c05622. DOI
Wang M. Shen S. Li L. Tang Z. Yang J. Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. J. Mater. Sci. 2017;52:5155–5164. doi: 10.1007/s10853-017-0752-z. DOI
Kumaravel V. Imam M. D. Badreldin A. Chava R. K. Do J. Y. Kang M. Abdel-Wahab A. Photocatalytic hydrogen production: role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts. Catalysts. 2019;9:276. doi: 10.3390/catal9030276. DOI
Denisov N. Qin S. Will J. Vasiljevic B. N. Skorodumova N. V. Pašti I. A. Sarma B. B. Osuagwu B. Yokosawa T. Voss J. Light-Induced Agglomeration of Single-Atom Platinum in Photocatalysis. Adv. Mater. 2023;35:2206569. doi: 10.1002/adma.202206569. PubMed DOI
Randles J. E. B. Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1947;1:11–19. doi: 10.1039/DF9470100011. DOI
Wang Z. Murphy A. O'Riordan A. O'Connell I. Equivalent impedance models for electrochemical nanosensor-based integrated system design. Sensors. 2021;21:3259. doi: 10.3390/s21093259. PubMed DOI PMC
Wang X. Maeda K. Thomas A. Takanabe K. Xin G. Carlsson J. M. Domen K. Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI
Vilé G. Albani D. Nachtegaal M. Chen Z. Dontsova D. Antonietti M. López N. Pérez-Ramírez J. Ein stabiler “Single-site”-Palladiumkatalysator für Hydrierungen. Angew. Chem. 2015;127:11417–11422. doi: 10.1002/ange.201505073. PubMed DOI
Liu L. Wu X. Wang L. Xu X. Gan L. Si Z. Li J. Zhang Q. Liu Y. Zhao Y. Ran R. Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Commun. Chem. 2019;2(1):18. doi: 10.1038/s42004-019-0117-4. https://dx.doi.org/10.1038/s42004-019-0117-4 DOI
Ryabov A. Kazankov G. Yatsimirskii A. Kuz'mina L. Burtseva O. Y. Dvortsova N. Polyakov V. Synthesis by ligand exchange, structural characterization, and aqueous chemistry of ortho-palladated oximes. Inorg. Chem. 1992;31:3083–3090. doi: 10.1021/ic00040a018. DOI
Maitlis P., Metal Complexes: The Organic Chemistry of Palladium, Elsevier, 2012, pp. 1–103
Pazderski L. 15N NMR coordination shifts in Pd (II), Pt (II), Au (III), Co (III), Rh (III), Ir (III), Pd (IV), and Pt (IV) complexes with pyridine, 2, 2′-bipyridine, 1, 10-phenanthroline, quinoline, isoquinoline, 2, 2′-biquinoline, 2, 2′: 6′, 2′-terpyridine and their alkyl or aryl derivatives. Magn. Reson. Chem. 2008;46:S3–S15. doi: 10.1002/mrc.2301. PubMed DOI
Wang N. Wang J. Hu J. Lu X. Sun J. Shi F. Liu Z.-H. Lei Z. Jiang R. Design of Palladium-Doped g-C 3 N 4 for Enhanced Photocatalytic Activity toward Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2018;1(6):2866–2873. doi: 10.1021/acsaem.8b00526. https://dx.doi.org/10.1021/acsaem.8b00526 DOI
Xu R. Xu B. You X. Shao D. Gao G. Li F. Wang X.-L. Yao Y.-F. Preparation of single-atom palladium catalysts with high photocatalytic hydrogen production performance by means of photochemical reactions conducted with frozen precursor solutions. J. Mater. Chem. A. 2023;11(21):11202–11209. doi: 10.1039/D3TA00098B. DOI