Pd single atoms on g-C3N4 photocatalysts: minimum loading for maximum activity

. 2025 Mar 12 ; 16 (11) : 4788-4795. [epub] 20250212

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39950063

Noble metal single atoms (SAs) on semiconductors are increasingly explored as co-catalysts to enhance the efficiency of photocatalytic hydrogen production. In this study, we introduce a "spontaneous deposition" approach to anchor Pd SAs onto graphitic carbon nitride (g-C3N4) using a highly dilute tetraaminepalladium(ii) chloride precursor. Maximized photocatalytic activity and significantly reduced charge transfer resistance can be achieved with a remarkably low Pd loading of 0.05 wt% using this approach. The resulting Pd SA-modified g-C3N4 demonstrates a remarkable hydrogen production efficiency of 0.24 mmol h-1 mg-1 Pd, which is >50 times larger than that of Pd nanoparticles deposited on g-C3N4 via conventional photodeposition. This significant enhancement in catalytic performance is attributed to improved electron transfer facilitated by the optimal coordination of Pd SAs within the g-C3N4 structure.

Zobrazit více v PubMed

Li Y. Tsang S. C. E. Recent progress and strategies for enhancing photocatalytic water splitting. Mater. Today Sustain. 2020;9:100032.

Nishioka S. Osterloh F. E. Wang X. Mallouk T. E. Maeda K. Photocatalytic water splitting. Nat. Rev. Methods Primers. 2023;3:42. doi: 10.1038/s43586-023-00226-x. DOI

Nakata K. Fujishima A. TiO2 photocatalysis: design and applications. J. Photochem. Photobiol., C. 2012;13:169–189. doi: 10.1016/j.jphotochemrev.2012.06.001. DOI

Roy P. Berger S. Schmuki P. TiO2 nanotubes: synthesis and applications. Angew. Chem., Int. Ed. 2011;50:2904–2939. doi: 10.1002/anie.201001374. PubMed DOI

Peiris S. de Silva H. B. Ranasinghe K. N. Bandara S. V. Perera I. R. Recent development and future prospects of TiO2 photocatalysis. J. Chin. Chem. Soc. 2021;68:738–769. doi: 10.1002/jccs.202000465. DOI

Hernández-Alonso M. D. Fresno F. Suárez S. Coronado J. M. Development of alternative photocatalysts to TiO 2: challenges and opportunities. Energy Environ. Sci. 2009;2:1231–1257. doi: 10.1039/B907933E. DOI

Bhanderi D. Lakhani P. Modi C. K. Graphitic carbon nitride (g-C3N4) as an emerging photocatalyst for sustainable environmental applications: a comprehensive review. RSC sustain. 2024;2:265–287. doi: 10.1039/D3SU00382E. DOI

Wang Q. Li Y. Huang F. Song S. Ai G. Xin X. Zhao B. Zheng Y. Zhang Z. Recent advances in g-C3N4-based materials and their application in energy and environmental sustainability. Molecules. 2023;28:432. doi: 10.3390/molecules28010432. PubMed DOI PMC

Pei J. Li H. Zhuang S. Zhang D. Yu D. Recent Advances in g-C3N4 Photocatalysts: A Review of Reaction Parameters, Structure Design and Exfoliation Methods. Catalysts. 2023;13:1402. doi: 10.3390/catal13111402. DOI

Zheng Y. Jiao Y. Jaroniec M. Qiao S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem., Int. Ed. 2015;54:52–65. doi: 10.1002/anie.201407031. PubMed DOI

Gao C. Low J. Long R. Kong T. Zhu J. Xiong Y. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 2020;120:12175–12216. doi: 10.1021/acs.chemrev.9b00840. PubMed DOI

Xia Y. Sayed M. Zhang L. Cheng B. Yu J. Single-atom heterogeneous photocatalysts. Chem Catal. 2021;1:1173–1214. doi: 10.1016/j.checat.2021.08.009. DOI

Kerketta U. Tesler A. B. Schmuki P. Single-atom Co-catalysts employed in titanium dioxide photocatalysis. Catalysts. 2022;12:1223. doi: 10.3390/catal12101223. DOI

Akinaga Y. Kawawaki T. Kameko H. Yamazaki Y. Yamazaki K. Nakayasu Y. Kato K. Tanaka Y. Hanindriyo A. T. Takagi M. Metal Single-Atom Cocatalyst on Carbon Nitride for the Photocatalytic Hydrogen Evolution Reaction: Effects of Metal Species. Adv. Funct. Mater. 2023;33:2303321. doi: 10.1002/adfm.202303321. DOI

Jia X. Zhao J. Zhang W. Fu X. Long J. Gu Q. Gao Z. Single-Atomic Pd Embedded 2D g-C3N4 Homogeneous Catalyst Analogues for Efficient LMCT Induced Full-Visible-Light Photocatalytic Suzuki Coupling. ChemistrySelect. 2022;7:e202202973. doi: 10.1002/slct.202202973. DOI

Hu F. Leng L. Zhang M. Chen W. Yu Y. Wang J. Horton J. H. Li Z. Direct synthesis of atomically dispersed palladium atoms supported on graphitic carbon nitride for efficient selective hydrogenation reactions. ACS Appl. Mater. Interfaces. 2020;12:54146–54154. doi: 10.1021/acsami.0c13881. PubMed DOI

Chen Z. Mitchell S. Vorobyeva E. Leary R. K. Hauert R. Furnival T. Ramasse Q. M. Thomas J. M. Midgley P. A. Dontsova D. Stabilization of single metal atoms on graphitic carbon nitride. Adv. Funct. Mater. 2017;27:1605785. doi: 10.1002/adfm.201605785. DOI

Xu R. Xu B. You X. Shao D. Gao G. Li F. Wang X.-L. Yao Y.-F. Preparation of single-atom palladium catalysts with high photocatalytic hydrogen production performance by means of photochemical reactions conducted with frozen precursor solutions. J. Mater. Chem. A. 2023;11:11202–11209. doi: 10.1039/D3TA00098B. DOI

Ren M. Zhang X. Liu Y. Yang G. Qin L. Meng J. Guo Y. Yang Y. Interlayer palladium-single-atom-coordinated cyano-group-rich graphitic carbon nitride for enhanced photocatalytic hydrogen production performance. ACS Catal. 2022;12:5077–5093. doi: 10.1021/acscatal.2c00427. DOI

Cao S. Li H. Tong T. Chen H. C. Yu A. Yu J. Chen H. M. Single-atom engineering of directional charge transfer channels and active sites for photocatalytic hydrogen evolution. Adv. Funct. Mater. 2018;28:1802169. doi: 10.1002/adfm.201802169. DOI

Suja P. John J. Rajan T. Anilkumar G. M. Yamaguchi T. Pillai S. C. Hareesh U. Graphitic carbon nitride (gC 3 N 4) based heterogeneous single atom catalysts: synthesis, characterisation and catalytic applications. J. Mater. Chem. A. 2023;11:8599–8646. doi: 10.1039/D2TA09776A. DOI

Li S. Kan Z. Wang H. Bai J. Liu Y. Liu S. Wu Y. Single-atom photo-catalysts: synthesis, characterization, and applications. Nano Mater. Sci. 2023:284–304.

Wu S. M. Schmuki P. Single Atom Cocatalysts in Photocatalysis. Adv. Mater. 2024:2414889. doi: 10.1002/adma.202414889. PubMed DOI PMC

Wang Y. Qin S. Denisov N. Kim H. Bad'ura Z. Sarma B. B. Schmuki P. Reactive Deposition Versus Strong Electrostatic Adsorption (SEA): A Key to Highly Active Single Atom Co-Catalysts in Photocatalytic H2 Generation. Adv. Mater. 2023;35:2211814. doi: 10.1002/adma.202211814. PubMed DOI

Qin S. Will J. Kim H. Denisov N. Carl S. Spiecker E. Schmuki P. Single atoms in photocatalysis: low loading is good enough. ACS Energy Lett. 2023;8:1209–1214. doi: 10.1021/acsenergylett.2c02801. DOI

Cha G. Mazare A. Hwang I. Denisov N. Will J. Yokosawa T. Badura Z. Zoppellaro G. Tesler A. B. Spiecker E. A facile “dark”-deposition approach for Pt single-atom trapping on facetted anatase TiO2 nanoflakes and use in photocatalytic H2 generation. Electrochim. Acta. 2022;412:140129. doi: 10.1016/j.electacta.2022.140129. DOI

Wu Z. Hwang I. Cha G. Qin S. Tomanec O. Badura Z. Kment S. Zboril R. Schmuki P. Optimized Pt single atom harvesting on TiO2 nanotubes—Towards a most efficient photocatalyst. Small. 2022;18:2104892. doi: 10.1002/smll.202104892. PubMed DOI

Torres-Pinto A. Sampaio M. J. Silva C. G. Faria J. L. Silva A. M. Metal-free carbon nitride photocatalysis with in situ hydrogen peroxide generation for the degradation of aromatic compounds. Appl. Catal., B. 2019;252:128–137. doi: 10.1016/j.apcatb.2019.03.040. DOI

Marchal C. Cottineau T. Méndez-Medrano M. G. Colbeau-Justin C. Caps V. Keller V. Au/TiO2–gC3N4 nanocomposites for enhanced photocatalytic H2 production from water under visible light irradiation with very low quantities of sacrificial agents. Adv. Energy Mater. 2018;8:1702142. doi: 10.1002/aenm.201702142. DOI

Karimi-Nazarabad M. Ahmadzadeh H. Goharshadi E. K. Porous perovskite-lanthanum cobaltite as an efficient cocatalyst in photoelectrocatalytic water oxidation by bismuth doped g-C3N4. Sol. Energy. 2021;227:426–437. doi: 10.1016/j.solener.2021.09.028. DOI

Fina F. Callear S. K. Carins G. M. Irvine J. T. Structural investigation of graphitic carbon nitride via XRD and neutron diffraction. Chem. Mater. 2015;27:2612–2618. doi: 10.1021/acs.chemmater.5b00411. DOI

Wang N. Wang J. Hu J. Lu X. Sun J. Shi F. Liu Z.-H. Lei Z. Jiang R. Design of palladium-doped g-C3N4 for enhanced photocatalytic activity toward hydrogen evolution reaction. ACS Appl. Energy Mater. 2018;1:2866–2873. doi: 10.1021/acsaem.8b00526. DOI

Li L. Dai X. Lu M. Guo C. Wabaidur S. M. Wu X.-L. Lou Z. Zhong Y. Hu Y. Electron-enriched single-Pd-sites on g-C3N4 nanosheets achieved by in-situ anchoring twinned Pd nanoparticles for efficient CO2 photoreduction. Adv. Powder Mater. 2024;3:100170. doi: 10.1016/j.apmate.2024.100170. DOI

Mondal S. Sahoo L. Banoo M. Vaishnav Y. Prabhakaran Vinod C. Gautam U. K. Enhancing the Catalytic Activity of Pd Nanocrystals towards Suzuki Cross-Coupling by g-C3N4 Photosensitization. ChemNanoMat. 2024;10:e202300451. doi: 10.1002/cnma.202300451. DOI

Wu S.-M. Wu L. Denisov N. Badura Z. Zoppellaro G. Yang X.-Y. Schmuki P. Pt Single Atoms on TiO2 Can Catalyze Water Oxidation in Photoelectrochemical Experiments. J. Am. Chem. Soc. 2024:16363–16368. doi: 10.1021/jacs.4c03319. PubMed DOI

Liu P. Huang Z. Gao X. Hong X. Zhu J. Wang G. Wu Y. Zeng J. Zheng X. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv. Mater. 2022;34:2200057. doi: 10.1002/adma.202200057. PubMed DOI

Ho P. H. Woo J.-W. Ilmasani R. F. Han J. Olsson L. The role of Pd–Pt interactions in the oxidation and sulfur resistance of bimetallic Pd–Pt/γ-Al2O3 diesel oxidation catalysts. Ind. Eng. Chem. Res. 2021;60:6596–6612. doi: 10.1021/acs.iecr.0c05622. DOI

Wang M. Shen S. Li L. Tang Z. Yang J. Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. J. Mater. Sci. 2017;52:5155–5164. doi: 10.1007/s10853-017-0752-z. DOI

Kumaravel V. Imam M. D. Badreldin A. Chava R. K. Do J. Y. Kang M. Abdel-Wahab A. Photocatalytic hydrogen production: role of sacrificial reagents on the activity of oxide, carbon, and sulfide catalysts. Catalysts. 2019;9:276. doi: 10.3390/catal9030276. DOI

Denisov N. Qin S. Will J. Vasiljevic B. N. Skorodumova N. V. Pašti I. A. Sarma B. B. Osuagwu B. Yokosawa T. Voss J. Light-Induced Agglomeration of Single-Atom Platinum in Photocatalysis. Adv. Mater. 2023;35:2206569. doi: 10.1002/adma.202206569. PubMed DOI

Randles J. E. B. Kinetics of rapid electrode reactions. Discuss. Faraday Soc. 1947;1:11–19. doi: 10.1039/DF9470100011. DOI

Wang Z. Murphy A. O'Riordan A. O'Connell I. Equivalent impedance models for electrochemical nanosensor-based integrated system design. Sensors. 2021;21:3259. doi: 10.3390/s21093259. PubMed DOI PMC

Wang X. Maeda K. Thomas A. Takanabe K. Xin G. Carlsson J. M. Domen K. Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009;8:76–80. doi: 10.1038/nmat2317. PubMed DOI

Vilé G. Albani D. Nachtegaal M. Chen Z. Dontsova D. Antonietti M. López N. Pérez-Ramírez J. Ein stabiler “Single-site”-Palladiumkatalysator für Hydrierungen. Angew. Chem. 2015;127:11417–11422. doi: 10.1002/ange.201505073. PubMed DOI

Liu L. Wu X. Wang L. Xu X. Gan L. Si Z. Li J. Zhang Q. Liu Y. Zhao Y. Ran R. Atomic palladium on graphitic carbon nitride as a hydrogen evolution catalyst under visible light irradiation. Commun. Chem. 2019;2(1):18. doi: 10.1038/s42004-019-0117-4. https://dx.doi.org/10.1038/s42004-019-0117-4 DOI

Ryabov A. Kazankov G. Yatsimirskii A. Kuz'mina L. Burtseva O. Y. Dvortsova N. Polyakov V. Synthesis by ligand exchange, structural characterization, and aqueous chemistry of ortho-palladated oximes. Inorg. Chem. 1992;31:3083–3090. doi: 10.1021/ic00040a018. DOI

Maitlis P., Metal Complexes: The Organic Chemistry of Palladium, Elsevier, 2012, pp. 1–103

Pazderski L. 15N NMR coordination shifts in Pd (II), Pt (II), Au (III), Co (III), Rh (III), Ir (III), Pd (IV), and Pt (IV) complexes with pyridine, 2, 2′-bipyridine, 1, 10-phenanthroline, quinoline, isoquinoline, 2, 2′-biquinoline, 2, 2′: 6′, 2′-terpyridine and their alkyl or aryl derivatives. Magn. Reson. Chem. 2008;46:S3–S15. doi: 10.1002/mrc.2301. PubMed DOI

Wang N. Wang J. Hu J. Lu X. Sun J. Shi F. Liu Z.-H. Lei Z. Jiang R. Design of Palladium-Doped g-C 3 N 4 for Enhanced Photocatalytic Activity toward Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2018;1(6):2866–2873. doi: 10.1021/acsaem.8b00526. https://dx.doi.org/10.1021/acsaem.8b00526 DOI

Xu R. Xu B. You X. Shao D. Gao G. Li F. Wang X.-L. Yao Y.-F. Preparation of single-atom palladium catalysts with high photocatalytic hydrogen production performance by means of photochemical reactions conducted with frozen precursor solutions. J. Mater. Chem. A. 2023;11(21):11202–11209. doi: 10.1039/D3TA00098B. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...