Field switching of microfabricated metamagnetic FeRh MRI contrast agents
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
39843509
PubMed Central
PMC11754896
DOI
10.1038/s41598-025-85384-6
PII: 10.1038/s41598-025-85384-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In a step towards generating switchable MRI cellular labels, we demonstrate in-situ field switching of micron scale metamagnetic Iron-Rhodium (FeRh) thin film particles. A thin-film (200 nm) FeRh sample was fabricated and patterned into an array of progressively smaller squares with sizes ranging from 500 μm down to 1 μm. The large first order phase change from antiferromagnetic to ferromagnetic state was characterized using vibrating sample magnetometry, magnetic force microscopy, and MRI. Room temperature MRI experiments sensitive to the local magnetic field surrounding the particles demonstrated the low moment state (OFF MRI contrast) at 4.7T and high moment state (ON MRI contrast) at 11.7T for the array where sizes down to 2-3 μm were observed in MRI at 50 μm resolution. The expected temperature dependent MRI contrast change was seen at 4.7T, where 10 μm particles could be observed at 150 μm resolution in the ON state. A shielded MRI insert, used to temporarily increase or decrease the magnetic field up to 0.77T amplitude, was used to reversibly switch the particle array at constant temperature and blink the particles ON and OFF at 4.7T. This work demonstrates the MRI contrast switching potential for FeRh particles with biological cell dimensions, and the use of magnetic field pulses for reversible MRI label contrast control.
Central European Institute of Technology Brno University of Technology Brno 612 00 Czechia
Institute of Physical Engineering Brno University of Technology Brno 616 69 Czechia
Tech4Health Institute NYU School of Medicine New York NY 10016 USA
Zobrazit více v PubMed
Barbic, M. et al. Magnetocaloric materials as switchable high contrast ratio MRI labels. Magn. Reson. Med.81, 2238–2246 (2019). PubMed PMC
Hoehn, M. et al. Cell tracking using magnetic resonance imaging. J. Physiol. (Lond). 584, 25–30 (2007). PubMed PMC
Bulte, J. W. M. In vivo MRI cell tracking: Clinical studies. AJR Am. J. Roentgenol.193, 314–325 (2009). PubMed PMC
Lüdeke, K. M., Röschmann, P. & Tischler, R. Susceptibility artefacts in NMR imaging. Magn. Reson. Imaging. 3, 329–343 (1985). PubMed
Kedziorek, D. A. & Kraitchman, D. L. Superparamagnetic iron oxide labeling of stem cells for MRI tracking and delivery in cardiovascular disease. Methods Mol. Biol.660, 171–183 (2010). PubMed PMC
Heyn, C. et al. In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magn. Reson. Med.56, 1001–1010 (2006). PubMed
Hubert, V. et al. MRI coupled with clinically-applicable iron oxide nanoparticles reveals choroid plexus involvement in a murine model of neuroinflammation. Sci. Rep.9, 10046 (2019). PubMed PMC
Shapiro, E. M., Skrtic, S. & Koretsky, A. P. Sizing it up: Cellular MRI using micron-sized iron oxide particles. Magn. Reson. Med.53, 329–338 (2005). PubMed
Shuboni-Mulligan, D. D. et al. In vivo serial MRI of age-dependent neural progenitor cell migration in the rat brain. Neuroimage199, 153–159 (2019). PubMed PMC
Dodd, S. J. et al. Detection of single mammalian cells by high-resolution magnetic resonance imaging. Biophys. J.76, 103–109 (1999). PubMed PMC
McKinnon, J. B., Melville, D. & Lee, E. W. The antiferromagnetic-ferromagnetic transition in iron-rhodium alloys. J. Phys. C Solid State Phys.3, S46–S58 (1970).
Annaorazov, M. P. et al. Alloys of the Fe-Rh system as a new class of working material for magnetic refrigerators. Cryogenics (Guildf). 32, 867–872 (1992).
Kouvel, J. S. Unusual nature of the abrupt magnetic transition in ferh and its pseudobinary variants. J. Appl. Phys.37, 1257–1258 (1966).
Gatel, C. et al. Inhomogeneous spatial distribution of the magnetic transition in an iron-rhodium thin film. Nat. Commun.8, 15703 (2017). PubMed PMC
Fan, R. et al. Ferromagnetism at the interfaces of antiferromagnetic FeRh epilayers. Phys. Rev. B. 82, 184418 (2010).
Fujita, A., Fujieda, S., Hasegawa, Y. & Fukamichi, K. Itinerant-electron metamagnetic transition and large magnetocaloric effects incompounds and their hydrides. Phys. Rev. B. 67, 104416 (2003).
Barbic, M. et al. Multifield and inverse-contrast switching of magnetocaloric high contrast ratio MRI labels. Magn. Reson. Med.85, 506–517 (2021). PubMed PMC
Uhlíř, V., Arregi, J. A. & Fullerton, E. E. Colossal magnetic phase transition asymmetry in mesoscale FeRh stripes. Nat. Commun.7, 13113 (2016). PubMed PMC
Arregi, J. A. et al. Magnetization reversal and confinement effects across the metamagnetic phase transition in mesoscale FeRh structures. J. Phys. D Appl. Phys.51, 105001 (2018).
Motyčková, L. et al. Preserving metamagnetism in self-assembled FeRh nanomagnets. ACS Appl. Mater. Interfaces. 15, 8653–8665 (2023). PubMed PMC
Bödenler, M. et al. R1 dispersion contrast at high field with fast field-cycling MRI. J. Magn. Reson.290, 68–75 (2018). PubMed
Harris, C. T. et al. Development and optimization of hardware for delta relaxation enhanced MRI. Magn. Reson. Med.72, 1182–1190 (2014). PubMed
Arregi, J. A. et al. Magnetic-field-controlled growth of magnetoelastic phase domains in FeRh. J. Phys. Mater.6, 034003 (2023).
Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open. Phys.10, (2012).
Gwyddion – Free SPM (AFM, SNOM/NSOM, STM, MFM, data analysis software. http://gwyddion.net
Bakker, C. J., Bhagwandien, R., Moerland, M. A. & Ramos, L. M. Simulation of susceptibility artifacts in 2D and 3D fourier transform spin-echo and gradient-echo magnetic resonance imaging. Magn. Reson. Imaging. 12, 767–774 (1994). PubMed
Krishna, V., Sammartino, F. & Rezai, A. A review of the current therapies, challenges, and future directions of transcranial focused ultrasound technology: Advances in diagnosis and treatment. JAMA Neurol.75, 246–254 (2018). PubMed
Mizutani-Tiebel, Y. et al. Concurrent TMS-fMRI: Technical challenges, developments, and overview of previous studies. Front. Psychiatry. 13, 825205 (2022). PubMed PMC
Yau, J. M., Jalinous, R., Cantarero, G. L. & Desmond, J. E. Static field influences on transcranial magnetic stimulation: Considerations for TMS in the scanner environment. Brain Stimulat. 7, 388–393 (2014). PubMed PMC
Macovski, A. & Conolly, S. Novel approaches to low-cost MRI. Magn. Reson. Med.30, 221–230 (1993). PubMed
Maat, S., Thiele, J. U. & Fullerton, E. E. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B. 72, 214432 (2005).
Tenenbein, M. & Huang, X. Iron. Handbook on the Toxicology of Metals. 391–417. 10.1016/B978-0-12-822946-0.00016-7. (Elsevier, 2022).
Iavicoli, I. & Leso, V. Rhodium. Handbook on the Toxicology of Metals. 691–728. 10.1016/B978-0-12-822946-0.00025-8. (Elsevier, 2022).
Cao, Y. et al. Phase transition and magnetocaloric effect in particulate Fe-Rh alloys. J. Mater. Sci.55, 13363–13371 (2020).
Zabow, G., Dodd, S. J., Shapiro, E., Moreland, J. & Koretsky, A. P. Microfabricated high-moment micrometer-sized MRI contrast agents. Magn. Reson. Med.65, 645–655 (2011). PubMed PMC
Mahato, K. et al. Gold nanoparticle surface engineering strategies and their applications in biomedicine and diagnostics. 3 Biotech.9, 57 (2019). PubMed PMC
Komlev, A. S., Gimaev, R. R. & Zverev, V. I. Smart magnetocaloric coatings for implants: Controlled drug release for targeted delivery. Phys. Open.7, 100063 (2021).