Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics

. 2021 Aug 24 ; 12 (1) : 5088. [epub] 20210824

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34429414
Odkazy

PubMed 34429414
PubMed Central PMC8384879
DOI 10.1038/s41467-021-25347-3
PII: 10.1038/s41467-021-25347-3
Knihovny.cz E-zdroje

Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 ± 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.

Erratum v

PubMed

Zobrazit více v PubMed

Li T, et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature. 2013;496:69–73. doi: 10.1038/nature11934. PubMed DOI

De Jong S, et al. Speed limit of the insulator–metal transition in magnetite. Nat. Mater. 2013;12:882–886. doi: 10.1038/nmat3718. PubMed DOI

Polesya S, Mankovsky S, Ködderitzsch D, Minár J, Ebert H. Finite-temperature magnetism of ferh compounds. Phys. Rev. B. 2016;93:024423. doi: 10.1103/PhysRevB.93.024423. DOI

Wollmann L, Nayak AK, Parkin SS, Felser C. Heusler 4.0: tunable materials. Annu. Rev. Mater. Res. 2017;47:247–270. doi: 10.1146/annurev-matsci-070616-123928. DOI

Rohwer T, et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature. 2011;471:490–493. doi: 10.1038/nature09829. PubMed DOI

Fausti D, et al. Light-induced superconductivity in a stripe-ordered cuprate. Science. 2011;331:189–191. doi: 10.1126/science.1197294. PubMed DOI

Singer A, et al. Photoinduced enhancement of the charge density wave amplitude. Phys. Rev. Lett. 2016;117:056401. doi: 10.1103/PhysRevLett.117.056401. PubMed DOI

Wegkamp D, et al. Instantaneous band gap collapse in photoexcited monoclinic vo2 due to photocarrier doping. Phys. Rev. Lett. 2014;113:216401. doi: 10.1103/PhysRevLett.113.216401. PubMed DOI

Shao Z, Cao X, Luo H, Jin P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 2018;10:581–605. doi: 10.1038/s41427-018-0061-2. DOI

Perfetti L, et al. Time evolution of the electronic structure of 1t − tas2 through the insulator-metal transition. Phys. Rev. Lett. 2006;97:067402. doi: 10.1103/PhysRevLett.97.067402. PubMed DOI

Stojchevska L, et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science. 2014;344:177–180. doi: 10.1126/science.1241591. PubMed DOI

Ono A, Ishihara S. Double-exchange interaction in optically induced nonequilibrium state: A conversion from ferromagnetic to antiferromagnetic structure. Phys. Rev. Lett. 2017;119:207202. doi: 10.1103/PhysRevLett.119.207202. PubMed DOI

Gray AX, et al. Correlation-driven insulator-metal transition in near-ideal vanadium dioxide films. Phys. Rev. Lett. 2016;116:116403. doi: 10.1103/PhysRevLett.116.116403. PubMed DOI

Wall S, et al. Tracking the evolution of electronic and structural properties of vo2 during the ultrafast photoinduced insulator-metal transition. Phys. Rev. B. 2013;87:115126. doi: 10.1103/PhysRevB.87.115126. DOI

Morrison VR, et al. A photoinduced metal-like phase of monoclinic vo2 revealed by ultrafast electron diffraction. Science. 2014;346:445–448. doi: 10.1126/science.1253779. PubMed DOI

Beaurepaire E, Merle J-C, Daunois A, Bigot J-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996;76:4250–4253. doi: 10.1103/PhysRevLett.76.4250. PubMed DOI

Gort R, et al. Early stages of ultrafast spin dynamics in a 3d ferromagnet. Phys. Rev. Lett. 2018;121:087206. doi: 10.1103/PhysRevLett.121.087206. PubMed DOI

Eich S, et al. Band structure evolution during the ultrafast ferromagnetic-paramagnetic phase transition in cobalt. Sci. Adv. 2017;3:e1602094. doi: 10.1126/sciadv.1602094. PubMed DOI PMC

Tengdin P, et al. Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel. Sci. Adv. 2018;4:eaap9744. doi: 10.1126/sciadv.aap9744. PubMed DOI PMC

Andres B, Weinelt M. Spin-resolved electronic structure of 3d transition metals during ultrafast demagnetization. J. Magn. Magn. Mater. 2020;501:166475. doi: 10.1016/j.jmmm.2020.166475. DOI

Eschenlohr A, et al. Ultrafast spin transport as key to femtosecond demagnetization. Nat. Mater. 2013;12:332–336. doi: 10.1038/nmat3546. PubMed DOI

Bergeard N, et al. Hot-electron-induced ultrafast demagnetization in Co/Pt multilayers. Phys. Rev. Lett. 2016;117:147203. doi: 10.1103/PhysRevLett.117.147203. PubMed DOI

Carva K, Battiato M, Legut D, Oppeneer PM. Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets. Phys. Rev. B. 2013;87:184425. doi: 10.1103/PhysRevB.87.184425. DOI

Matsubara M, et al. Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite gd0.55sr0.45mno3. Phys. Rev. Lett. 2007;99:207401. doi: 10.1103/PhysRevLett.99.207401. PubMed DOI

Bossini D, et al. Femtosecond activation of magnetoelectricity. Nat. Phys. 2018;14:370–374. doi: 10.1038/s41567-017-0036-1. DOI

Kirilyuk A, Kimel AV, Rasing T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010;82:2731–2784. doi: 10.1103/RevModPhys.82.2731. DOI

Fallot M, Hocart R. Sur l’apparition du ferromagnétisme par élévation du température dans des alliages de fer et de rhodium. Rev. Sci. 1939;77:498–501.

Kouvel JS, Hartelius CC. Anomalous magnetic moments and transformations in the ordered alloy FeRh. J. Appl. Phys. 1962;33:1343–1344. doi: 10.1063/1.1728721. DOI

Maat S, Thiele J-UU, Fullerton EE. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B. 2005;72:214432. doi: 10.1103/PhysRevB.72.214432. DOI

Baldasseroni C, et al. Temperature-driven nucleation of ferromagnetic domains in FeRh thin films. Appl. Phys. Lett. 2012;100:262401. doi: 10.1063/1.4730957. DOI

Uhlíř V, Arregi JA, Fullerton EE. Colossal magnetic phase transition asymmetry in mesoscale ferh stripes. Nat. Commun. 2016;7:13113. doi: 10.1038/ncomms13113. PubMed DOI PMC

Keavney DJ, et al. Phase coexistence and kinetic arrest in the magnetostructural transition of the ordered alloy ferh. Sci. Rep. 2018;8:1778. doi: 10.1038/s41598-018-20101-0. PubMed DOI PMC

Ju G, et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 2004;93:197403. doi: 10.1103/PhysRevLett.93.197403. PubMed DOI

Thiele J-U, Buess M, Back CH. Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in ferh on a sub-picosecond time scale. Appl. Phys. Lett. 2004;85:2857–2859. doi: 10.1063/1.1799244. DOI

Bergman B, et al. Identifying growth mechanisms for laser-induced magnetization in ferh. Phys. Rev. B. 2006;73:060407(R). doi: 10.1103/PhysRevB.73.060407. DOI

Radu I, et al. Laser-induced generation and quenching of magnetization on FeRh studied with time-resolved x-ray magnetic circular dichroism. Phys. Rev. B. 2010;81:104415. doi: 10.1103/PhysRevB.81.104415. DOI

Mariager SO, et al. Structural and magnetic dynamics of a laser induced phase transition in ferh. Phys. Rev. Lett. 2012;108:087201. doi: 10.1103/PhysRevLett.108.087201. PubMed DOI

Quirin F, et al. Structural dynamics in FeRh during a laser-induced metamagnetic phase transition. Phys. Rev. B. 2012;85:020103(R). doi: 10.1103/PhysRevB.85.020103. DOI

Lee JS, Vescovo E, Plucinski L, Schneider CM, Kao CC. Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100) Phys. Rev. B. 2010;82:224410. doi: 10.1103/PhysRevB.82.224410. DOI

Gray AX, et al. Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission. Phys. Rev. Lett. 2012;108:257208. doi: 10.1103/PhysRevLett.108.257208. PubMed DOI

Pressacco F, et al. Stable room-temperature ferromagnetic phase at the FeRh(100) surface. Sci. Rep. 2016;6:22383. doi: 10.1038/srep22383. PubMed DOI PMC

Maiti K, Malagoli MC, Magnano E, Dallmeyer A, Carbone C. Electronic band structure of gd: A consistent description. Phys. Rev. Lett. 2001;86:2846–2849. doi: 10.1103/PhysRevLett.86.2846. PubMed DOI

Beaulieu N, et al. Probing ultrafast dynamics in electronic structure of epitaxial gd(0001) on w(110) J. Electron Spectrosc. 2013;189:40–45. doi: 10.1016/j.elspec.2013.06.005. DOI

Sirotti F, et al. Multiphoton k-resolved photoemission from gold surface states with 800-nm femtosecond laser pulses. Phys. Rev. B. 2014;90:035401. doi: 10.1103/PhysRevB.90.035401. DOI

Pressacco F, et al. Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission. Struct. Dyn. 2018;5:034501. doi: 10.1063/1.5027809. PubMed DOI PMC

Sandratskii LM, Mavropoulos P. Magnetic excitations and femtomagnetism of ferh: A first-principles study. Phys. Rev. B. 2011;83:174408. doi: 10.1103/PhysRevB.83.174408. DOI

Gruner ME, Hoffmann E, Entel P. Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α − FeRh. Phys. Rev. B. 2003;67:064415. doi: 10.1103/PhysRevB.67.064415. DOI

Gu RY, Antropov VP. Dominance of the spin-wave contribution to the magnetic phase transition in ferh. Phys. Rev. B. 2005;72:012403. doi: 10.1103/PhysRevB.72.012403. DOI

Elliott P, Müller T, Dewhurst JK, Sharma S, Gross EKU. Ultrafast laser induced local magnetization dynamics in heusler compounds. Sci. Rep. 2016;6:38911. doi: 10.1038/srep38911. PubMed DOI PMC

Dewhurst JK, Elliott P, Shallcross S, Gross EKU, Sharma S. Laser-induced intersite spin transfer. Nano Lett. 2018;18:1842–1848. doi: 10.1021/acs.nanolett.7b05118. PubMed DOI

Hofherr M, et al. Ultrafast optically induced spin transfer in ferromagnetic alloys. Sci. Adv. 2020;6:eaay8717. doi: 10.1126/sciadv.aay8717. PubMed DOI PMC

Arregi JA, Caha O, Uhlíř V. Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates. Phys. Rev. B. 2020;101:174413. doi: 10.1103/PhysRevB.101.174413. DOI

Uhlíř V, et al. Single-layer graphene on epitaxial FeRh thin films. Appl. Surf. Sci. 2020;514:145923. doi: 10.1016/j.apsusc.2020.145923. DOI

Martins M, et al. Monochromator beamline for FLASH. Rev. Sci. Instr. 2006;77:115108. doi: 10.1063/1.2364148. DOI

Gerasimova N, Dziarzhytski S, Feldhaus J. The monochromator beamline at flash: performance, capabilities and upgrade plans. J. Mod. Opt. 2011;58:1480–1485. doi: 10.1080/09500340.2011.588344. DOI

Ackermann W, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics. 2007;1:336–342. doi: 10.1038/nphoton.2007.76. DOI

Rossbach J, Schneider JR, Wurth W. 10 years of pioneering x-ray science at the free-electron laser flash at desy. Phys. Rep. 2019;808:1–74. doi: 10.1016/j.physrep.2019.02.002. DOI

Kutnyakhov D, et al. Time-and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser. Rev. Sci. Instrum. 2020;91:013109. doi: 10.1063/1.5118777. PubMed DOI

Schönhense G, Medjanik K, Elmers HJ. Space-, time- and spin-resolved photoemission. J. Electron Spectros. Relat. Phenomena. 2015;200:94–118. doi: 10.1016/j.elspec.2015.05.016. DOI

Giannozzi P, et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009;21:395502. PubMed

Giannozzi P, et al. Advanced capabilities for materials modelling with quantum espresso. J. Phys.: Condens. Matter. 2017;29:465901. PubMed

Marini A, Hogan C, Grüning M, Varsano D. yambo: An ab initio tool for excited state calculations. Comput. Phys. Commun. 2009;180:1392–1403. doi: 10.1016/j.cpc.2009.02.003. DOI

Sangalli D, Marini A. Ultra-fast carriers relaxation in bulk silicon following photo-excitation with a short and polarized laser pulse. Europhys. Lett. 2015;110:47004. doi: 10.1209/0295-5075/110/47004. DOI

Aschauer U, Braddell R, Brechbühl SA, Derlet PM, Spaldin NA. Strain-induced structural instability in ferh. Phys. Rev. B. 2016;94:014109. doi: 10.1103/PhysRevB.94.014109. DOI

Wolloch M, et al. Impact of lattice dynamics on the phase stability of metamagnetic ferh: Bulk and thin films. Phys. Rev. B. 2016;94:174435. doi: 10.1103/PhysRevB.94.174435. DOI

Zarkevich NA, Johnson DD. Ferh ground state and martensitic transformation. Phys. Rev. B. 2018;97:014202. doi: 10.1103/PhysRevB.97.014202. DOI

Yeh J, Lindau I. Atomic subshell photoionization cross sections and asymmetry parameters: 1≤ z ≤103. At. Data Nucl. Data Tables. 1985;32:1–155. doi: 10.1016/0092-640X(85)90016-6. DOI

Sangalli D, et al. Many-body perturbation theory calculations using the yambo code. J. Phys.: Condens. Matter. 2019;31:325902. PubMed

Shirane G, Chen C, Flinn P, Nathans R. Hyperfine fields and magnetic moments in the fe–rh system. J. Appl. Phys. 1963;34:1044–1045. doi: 10.1063/1.1729362. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...