Subpicosecond metamagnetic phase transition in FeRh driven by non-equilibrium electron dynamics
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
PubMed
34429414
PubMed Central
PMC8384879
DOI
10.1038/s41467-021-25347-3
PII: 10.1038/s41467-021-25347-3
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Femtosecond light-induced phase transitions between different macroscopic orders provide the possibility to tune the functional properties of condensed matter on ultrafast timescales. In first-order phase transitions, transient non-equilibrium phases and inherent phase coexistence often preclude non-ambiguous detection of transition precursors and their temporal onset. Here, we present a study combining time-resolved photoelectron spectroscopy and ab-initio electron dynamics calculations elucidating the transient subpicosecond processes governing the photoinduced generation of ferromagnetic order in antiferromagnetic FeRh. The transient photoemission spectra are accounted for by assuming that not only the occupation of electronic states is modified during the photoexcitation process. Instead, the photo-generated non-thermal distribution of electrons modifies the electronic band structure. The ferromagnetic phase of FeRh, characterized by a minority band near the Fermi energy, is established 350 ± 30 fs after the laser excitation. Ab-initio calculations indicate that the phase transition is initiated by a photoinduced Rh-to-Fe charge transfer.
CEITEC BUT Brno University of Technology Brno Czech Republic
Deutsches Elektronen Synchrotron DESY Hamburg Germany
European Theoretical Spectroscopy Facility
Institute of Physical Engineering Brno University of Technology Brno Czech Republic
Istituto di Struttura della Materia Consiglio Nazionale delle Ricerche Monterotondo Stazione Italy
Johannes Gutenberg Universität Institute of Physics Mainz Germany
LSI CNRS CEA DRF IRAMIS École Polytechnique Institut Polytechnique de Paris Palaiseau France
Physique de la Matiére Condensée CNRS and École Polytechnique IP Paris Palaiseau France
Synchrotron SOLEIL L'Orme des Merisiers Gif sur Yvette France
The Hamburg Centre for Ultrafast Imaging Hamburg University Hamburg Germany
See more in PubMed
Li T, et al. Femtosecond switching of magnetism via strongly correlated spin–charge quantum excitations. Nature. 2013;496:69–73. doi: 10.1038/nature11934. PubMed DOI
De Jong S, et al. Speed limit of the insulator–metal transition in magnetite. Nat. Mater. 2013;12:882–886. doi: 10.1038/nmat3718. PubMed DOI
Polesya S, Mankovsky S, Ködderitzsch D, Minár J, Ebert H. Finite-temperature magnetism of ferh compounds. Phys. Rev. B. 2016;93:024423. doi: 10.1103/PhysRevB.93.024423. DOI
Wollmann L, Nayak AK, Parkin SS, Felser C. Heusler 4.0: tunable materials. Annu. Rev. Mater. Res. 2017;47:247–270. doi: 10.1146/annurev-matsci-070616-123928. DOI
Rohwer T, et al. Collapse of long-range charge order tracked by time-resolved photoemission at high momenta. Nature. 2011;471:490–493. doi: 10.1038/nature09829. PubMed DOI
Fausti D, et al. Light-induced superconductivity in a stripe-ordered cuprate. Science. 2011;331:189–191. doi: 10.1126/science.1197294. PubMed DOI
Singer A, et al. Photoinduced enhancement of the charge density wave amplitude. Phys. Rev. Lett. 2016;117:056401. doi: 10.1103/PhysRevLett.117.056401. PubMed DOI
Wegkamp D, et al. Instantaneous band gap collapse in photoexcited monoclinic vo2 due to photocarrier doping. Phys. Rev. Lett. 2014;113:216401. doi: 10.1103/PhysRevLett.113.216401. PubMed DOI
Shao Z, Cao X, Luo H, Jin P. Recent progress in the phase-transition mechanism and modulation of vanadium dioxide materials. NPG Asia Mater. 2018;10:581–605. doi: 10.1038/s41427-018-0061-2. DOI
Perfetti L, et al. Time evolution of the electronic structure of 1t − tas2 through the insulator-metal transition. Phys. Rev. Lett. 2006;97:067402. doi: 10.1103/PhysRevLett.97.067402. PubMed DOI
Stojchevska L, et al. Ultrafast switching to a stable hidden quantum state in an electronic crystal. Science. 2014;344:177–180. doi: 10.1126/science.1241591. PubMed DOI
Ono A, Ishihara S. Double-exchange interaction in optically induced nonequilibrium state: A conversion from ferromagnetic to antiferromagnetic structure. Phys. Rev. Lett. 2017;119:207202. doi: 10.1103/PhysRevLett.119.207202. PubMed DOI
Gray AX, et al. Correlation-driven insulator-metal transition in near-ideal vanadium dioxide films. Phys. Rev. Lett. 2016;116:116403. doi: 10.1103/PhysRevLett.116.116403. PubMed DOI
Wall S, et al. Tracking the evolution of electronic and structural properties of vo2 during the ultrafast photoinduced insulator-metal transition. Phys. Rev. B. 2013;87:115126. doi: 10.1103/PhysRevB.87.115126. DOI
Morrison VR, et al. A photoinduced metal-like phase of monoclinic vo2 revealed by ultrafast electron diffraction. Science. 2014;346:445–448. doi: 10.1126/science.1253779. PubMed DOI
Beaurepaire E, Merle J-C, Daunois A, Bigot J-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996;76:4250–4253. doi: 10.1103/PhysRevLett.76.4250. PubMed DOI
Gort R, et al. Early stages of ultrafast spin dynamics in a 3d ferromagnet. Phys. Rev. Lett. 2018;121:087206. doi: 10.1103/PhysRevLett.121.087206. PubMed DOI
Eich S, et al. Band structure evolution during the ultrafast ferromagnetic-paramagnetic phase transition in cobalt. Sci. Adv. 2017;3:e1602094. doi: 10.1126/sciadv.1602094. PubMed DOI PMC
Tengdin P, et al. Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel. Sci. Adv. 2018;4:eaap9744. doi: 10.1126/sciadv.aap9744. PubMed DOI PMC
Andres B, Weinelt M. Spin-resolved electronic structure of 3d transition metals during ultrafast demagnetization. J. Magn. Magn. Mater. 2020;501:166475. doi: 10.1016/j.jmmm.2020.166475. DOI
Eschenlohr A, et al. Ultrafast spin transport as key to femtosecond demagnetization. Nat. Mater. 2013;12:332–336. doi: 10.1038/nmat3546. PubMed DOI
Bergeard N, et al. Hot-electron-induced ultrafast demagnetization in Co/Pt multilayers. Phys. Rev. Lett. 2016;117:147203. doi: 10.1103/PhysRevLett.117.147203. PubMed DOI
Carva K, Battiato M, Legut D, Oppeneer PM. Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets. Phys. Rev. B. 2013;87:184425. doi: 10.1103/PhysRevB.87.184425. DOI
Matsubara M, et al. Ultrafast photoinduced insulator-ferromagnet transition in the perovskite manganite gd0.55sr0.45mno3. Phys. Rev. Lett. 2007;99:207401. doi: 10.1103/PhysRevLett.99.207401. PubMed DOI
Bossini D, et al. Femtosecond activation of magnetoelectricity. Nat. Phys. 2018;14:370–374. doi: 10.1038/s41567-017-0036-1. DOI
Kirilyuk A, Kimel AV, Rasing T. Ultrafast optical manipulation of magnetic order. Rev. Mod. Phys. 2010;82:2731–2784. doi: 10.1103/RevModPhys.82.2731. DOI
Fallot M, Hocart R. Sur l’apparition du ferromagnétisme par élévation du température dans des alliages de fer et de rhodium. Rev. Sci. 1939;77:498–501.
Kouvel JS, Hartelius CC. Anomalous magnetic moments and transformations in the ordered alloy FeRh. J. Appl. Phys. 1962;33:1343–1344. doi: 10.1063/1.1728721. DOI
Maat S, Thiele J-UU, Fullerton EE. Temperature and field hysteresis of the antiferromagnetic-to-ferromagnetic phase transition in epitaxial FeRh films. Phys. Rev. B. 2005;72:214432. doi: 10.1103/PhysRevB.72.214432. DOI
Baldasseroni C, et al. Temperature-driven nucleation of ferromagnetic domains in FeRh thin films. Appl. Phys. Lett. 2012;100:262401. doi: 10.1063/1.4730957. DOI
Uhlíř V, Arregi JA, Fullerton EE. Colossal magnetic phase transition asymmetry in mesoscale ferh stripes. Nat. Commun. 2016;7:13113. doi: 10.1038/ncomms13113. PubMed DOI PMC
Keavney DJ, et al. Phase coexistence and kinetic arrest in the magnetostructural transition of the ordered alloy ferh. Sci. Rep. 2018;8:1778. doi: 10.1038/s41598-018-20101-0. PubMed DOI PMC
Ju G, et al. Ultrafast generation of ferromagnetic order via a laser-induced phase transformation in FeRh thin films. Phys. Rev. Lett. 2004;93:197403. doi: 10.1103/PhysRevLett.93.197403. PubMed DOI
Thiele J-U, Buess M, Back CH. Spin dynamics of the antiferromagnetic-to-ferromagnetic phase transition in ferh on a sub-picosecond time scale. Appl. Phys. Lett. 2004;85:2857–2859. doi: 10.1063/1.1799244. DOI
Bergman B, et al. Identifying growth mechanisms for laser-induced magnetization in ferh. Phys. Rev. B. 2006;73:060407(R). doi: 10.1103/PhysRevB.73.060407. DOI
Radu I, et al. Laser-induced generation and quenching of magnetization on FeRh studied with time-resolved x-ray magnetic circular dichroism. Phys. Rev. B. 2010;81:104415. doi: 10.1103/PhysRevB.81.104415. DOI
Mariager SO, et al. Structural and magnetic dynamics of a laser induced phase transition in ferh. Phys. Rev. Lett. 2012;108:087201. doi: 10.1103/PhysRevLett.108.087201. PubMed DOI
Quirin F, et al. Structural dynamics in FeRh during a laser-induced metamagnetic phase transition. Phys. Rev. B. 2012;85:020103(R). doi: 10.1103/PhysRevB.85.020103. DOI
Lee JS, Vescovo E, Plucinski L, Schneider CM, Kao CC. Electronic structure and magnetic properties of epitaxial FeRh(001) ultra-thin films on W(100) Phys. Rev. B. 2010;82:224410. doi: 10.1103/PhysRevB.82.224410. DOI
Gray AX, et al. Electronic structure changes across the metamagnetic transition in FeRh via hard X-ray photoemission. Phys. Rev. Lett. 2012;108:257208. doi: 10.1103/PhysRevLett.108.257208. PubMed DOI
Pressacco F, et al. Stable room-temperature ferromagnetic phase at the FeRh(100) surface. Sci. Rep. 2016;6:22383. doi: 10.1038/srep22383. PubMed DOI PMC
Maiti K, Malagoli MC, Magnano E, Dallmeyer A, Carbone C. Electronic band structure of gd: A consistent description. Phys. Rev. Lett. 2001;86:2846–2849. doi: 10.1103/PhysRevLett.86.2846. PubMed DOI
Beaulieu N, et al. Probing ultrafast dynamics in electronic structure of epitaxial gd(0001) on w(110) J. Electron Spectrosc. 2013;189:40–45. doi: 10.1016/j.elspec.2013.06.005. DOI
Sirotti F, et al. Multiphoton k-resolved photoemission from gold surface states with 800-nm femtosecond laser pulses. Phys. Rev. B. 2014;90:035401. doi: 10.1103/PhysRevB.90.035401. DOI
Pressacco F, et al. Laser induced phase transition in epitaxial FeRh layers studied by pump-probe valence band photoemission. Struct. Dyn. 2018;5:034501. doi: 10.1063/1.5027809. PubMed DOI PMC
Sandratskii LM, Mavropoulos P. Magnetic excitations and femtomagnetism of ferh: A first-principles study. Phys. Rev. B. 2011;83:174408. doi: 10.1103/PhysRevB.83.174408. DOI
Gruner ME, Hoffmann E, Entel P. Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α − FeRh. Phys. Rev. B. 2003;67:064415. doi: 10.1103/PhysRevB.67.064415. DOI
Gu RY, Antropov VP. Dominance of the spin-wave contribution to the magnetic phase transition in ferh. Phys. Rev. B. 2005;72:012403. doi: 10.1103/PhysRevB.72.012403. DOI
Elliott P, Müller T, Dewhurst JK, Sharma S, Gross EKU. Ultrafast laser induced local magnetization dynamics in heusler compounds. Sci. Rep. 2016;6:38911. doi: 10.1038/srep38911. PubMed DOI PMC
Dewhurst JK, Elliott P, Shallcross S, Gross EKU, Sharma S. Laser-induced intersite spin transfer. Nano Lett. 2018;18:1842–1848. doi: 10.1021/acs.nanolett.7b05118. PubMed DOI
Hofherr M, et al. Ultrafast optically induced spin transfer in ferromagnetic alloys. Sci. Adv. 2020;6:eaay8717. doi: 10.1126/sciadv.aay8717. PubMed DOI PMC
Arregi JA, Caha O, Uhlíř V. Evolution of strain across the magnetostructural phase transition in epitaxial FeRh films on different substrates. Phys. Rev. B. 2020;101:174413. doi: 10.1103/PhysRevB.101.174413. DOI
Uhlíř V, et al. Single-layer graphene on epitaxial FeRh thin films. Appl. Surf. Sci. 2020;514:145923. doi: 10.1016/j.apsusc.2020.145923. DOI
Martins M, et al. Monochromator beamline for FLASH. Rev. Sci. Instr. 2006;77:115108. doi: 10.1063/1.2364148. DOI
Gerasimova N, Dziarzhytski S, Feldhaus J. The monochromator beamline at flash: performance, capabilities and upgrade plans. J. Mod. Opt. 2011;58:1480–1485. doi: 10.1080/09500340.2011.588344. DOI
Ackermann W, et al. Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics. 2007;1:336–342. doi: 10.1038/nphoton.2007.76. DOI
Rossbach J, Schneider JR, Wurth W. 10 years of pioneering x-ray science at the free-electron laser flash at desy. Phys. Rep. 2019;808:1–74. doi: 10.1016/j.physrep.2019.02.002. DOI
Kutnyakhov D, et al. Time-and momentum-resolved photoemission studies using time-of-flight momentum microscopy at a free-electron laser. Rev. Sci. Instrum. 2020;91:013109. doi: 10.1063/1.5118777. PubMed DOI
Schönhense G, Medjanik K, Elmers HJ. Space-, time- and spin-resolved photoemission. J. Electron Spectros. Relat. Phenomena. 2015;200:94–118. doi: 10.1016/j.elspec.2015.05.016. DOI
Giannozzi P, et al. Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter. 2009;21:395502. PubMed
Giannozzi P, et al. Advanced capabilities for materials modelling with quantum espresso. J. Phys.: Condens. Matter. 2017;29:465901. PubMed
Marini A, Hogan C, Grüning M, Varsano D. yambo: An ab initio tool for excited state calculations. Comput. Phys. Commun. 2009;180:1392–1403. doi: 10.1016/j.cpc.2009.02.003. DOI
Sangalli D, Marini A. Ultra-fast carriers relaxation in bulk silicon following photo-excitation with a short and polarized laser pulse. Europhys. Lett. 2015;110:47004. doi: 10.1209/0295-5075/110/47004. DOI
Aschauer U, Braddell R, Brechbühl SA, Derlet PM, Spaldin NA. Strain-induced structural instability in ferh. Phys. Rev. B. 2016;94:014109. doi: 10.1103/PhysRevB.94.014109. DOI
Wolloch M, et al. Impact of lattice dynamics on the phase stability of metamagnetic ferh: Bulk and thin films. Phys. Rev. B. 2016;94:174435. doi: 10.1103/PhysRevB.94.174435. DOI
Zarkevich NA, Johnson DD. Ferh ground state and martensitic transformation. Phys. Rev. B. 2018;97:014202. doi: 10.1103/PhysRevB.97.014202. DOI
Yeh J, Lindau I. Atomic subshell photoionization cross sections and asymmetry parameters: 1≤ z ≤103. At. Data Nucl. Data Tables. 1985;32:1–155. doi: 10.1016/0092-640X(85)90016-6. DOI
Sangalli D, et al. Many-body perturbation theory calculations using the yambo code. J. Phys.: Condens. Matter. 2019;31:325902. PubMed
Shirane G, Chen C, Flinn P, Nathans R. Hyperfine fields and magnetic moments in the fe–rh system. J. Appl. Phys. 1963;34:1044–1045. doi: 10.1063/1.1729362. DOI