Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27762278
PubMed Central
PMC5071853
DOI
10.1038/srep35471
PII: srep35471
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.
Department of Materials Science and Engineering KAIST Daejeon 305 701 Republic of Korea
Institut de Ciència de Materials de Barcelona Campus de Bellaterra 08193 Bellaterra Spain
Institute of Physics Academy of Sciences of the Czech Republic v v i CZ 16253 Praha 6 Czech Republic
Max Planck Institute of Microstructure Physics Weinberg 2 D 06120 Halle Germany
School of Physics and Astronomy University of Nottingham Nottingham NG7 2RD United Kingdom
Zobrazit více v PubMed
MacDonald A. & Tsoi M. Antiferromagnetic metal spintronics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 3098–3114 (2011). PubMed
Gomonay E. & Loktev V. Spintronics of antiferromagnetic systems (Review Article). Low Temperature Physics 40, 17–35 (2014).
Shick A. B., Khmelevskyi S., Mryasov O. N., Wunderlich J. & Jungwirth T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics. Physical Review B 81, 212409 (2010).
Goodenough J. B. Magnetism and chemical bond. (Interscience publishers, 1963).
Železný J. et al.. Relativistic N\‘eel-Order Fields Induced by Electrical Current in Antiferromagnets. Physical Review Letters 113, 157201 (2014). PubMed
Kimel A., Kirilyuk A., Tsvetkov A., Pisarev R. & Rasing T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004). PubMed
Jungwirth T., Marti X., Wadley P. & Wunderlich J. Antiferromagnetic spintronics. Nat Nano 11, 231–241, doi: 10.1038/nnano.2016.18 (2016). PubMed DOI
Marti X., Fina I. & Jungwirth T. Prospect for antiferromagnetic spintronics. Magnetics, IEEE Transactions on 51, 1–4 (2015).
Fina I. et al.. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat Commun 5, 4671, doi: 10.1038/ncomms5671 (2014). PubMed DOI
Marti X. et al.. Room-temperature antiferromagnetic memory resistor. Nature Materials 13, 367 (2014). PubMed
Petti D. et al.. Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Applied Physics Letters 102, 192404 (2013).
Park B. et al.. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Materials 10, 347–351 (2011). PubMed
Wadley P. et al.. Electrical switching of an antiferromagnet. Science 351, 587–590, doi: 10.1126/science.aab1031 (2016). PubMed DOI
Nogués J. & Schuller I. K. Exchange bias. Journal of Magnetism and Magnetic Materials 192, 203–232 (1999).
Martí X. et al.. Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks. Physical Review Letters 108, 017201 (2012). PubMed
Zhang X. & Zou L. Planar Hall effect in Y3Fe5O12/IrMn films. Applied Physics Letters 105, 262401 (2014).
Takacs J. A phenomenological mathematical model of hysteresis. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering 20, 1002–1015 (2001).
Isasa M. et al.. Spin Hall magnetoresistance at Pt/CoFe2O4 interfaces and texture effects. Applied Physics Letters 105, 142402 (2014).
Mendes J. et al.. Large inverse spin Hall effect in the antiferromagnetic metal Ir 20 Mn 80. Physical Review B 89, 140406 (2014).
Galceran R. et al.. Engineering the microstructure and magnetism of La2CoMnO6– δ thin films by tailoring oxygen stoichiometry. Applied Physics Letters 105, 242401 (2014).