Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn

. 2016 Oct 20 ; 6 () : 35471. [epub] 20161020

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27762278

Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

Zobrazit více v PubMed

MacDonald A. & Tsoi M. Antiferromagnetic metal spintronics. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 3098–3114 (2011). PubMed

Gomonay E. & Loktev V. Spintronics of antiferromagnetic systems (Review Article). Low Temperature Physics 40, 17–35 (2014).

Shick A. B., Khmelevskyi S., Mryasov O. N., Wunderlich J. & Jungwirth T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: A route towards antiferromagnetic spintronics. Physical Review B 81, 212409 (2010).

Goodenough J. B. Magnetism and chemical bond. (Interscience publishers, 1963).

Železný J. et al.. Relativistic N\‘eel-Order Fields Induced by Electrical Current in Antiferromagnets. Physical Review Letters 113, 157201 (2014). PubMed

Kimel A., Kirilyuk A., Tsvetkov A., Pisarev R. & Rasing T. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3. Nature 429, 850–853 (2004). PubMed

Jungwirth T., Marti X., Wadley P. & Wunderlich J. Antiferromagnetic spintronics. Nat Nano 11, 231–241, doi: 10.1038/nnano.2016.18 (2016). PubMed DOI

Marti X., Fina I. & Jungwirth T. Prospect for antiferromagnetic spintronics. Magnetics, IEEE Transactions on 51, 1–4 (2015).

Fina I. et al.. Anisotropic magnetoresistance in an antiferromagnetic semiconductor. Nat Commun 5, 4671, doi: 10.1038/ncomms5671 (2014). PubMed DOI

Marti X. et al.. Room-temperature antiferromagnetic memory resistor. Nature Materials 13, 367 (2014). PubMed

Petti D. et al.. Storing magnetic information in IrMn/MgO/Ta tunnel junctions via field-cooling. Applied Physics Letters 102, 192404 (2013).

Park B. et al.. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Materials 10, 347–351 (2011). PubMed

Wadley P. et al.. Electrical switching of an antiferromagnet. Science 351, 587–590, doi: 10.1126/science.aab1031 (2016). PubMed DOI

Nogués J. & Schuller I. K. Exchange bias. Journal of Magnetism and Magnetic Materials 192, 203–232 (1999).

Martí X. et al.. Electrical measurement of antiferromagnetic moments in exchange-coupled IrMn/NiFe stacks. Physical Review Letters 108, 017201 (2012). PubMed

Zhang X. & Zou L. Planar Hall effect in Y3Fe5O12/IrMn films. Applied Physics Letters 105, 262401 (2014).

Takacs J. A phenomenological mathematical model of hysteresis. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering 20, 1002–1015 (2001).

Isasa M. et al.. Spin Hall magnetoresistance at Pt/CoFe2O4 interfaces and texture effects. Applied Physics Letters 105, 142402 (2014).

Mendes J. et al.. Large inverse spin Hall effect in the antiferromagnetic metal Ir 20 Mn 80. Physical Review B 89, 140406 (2014).

Galceran R. et al.. Engineering the microstructure and magnetism of La2CoMnO6– δ thin films by tailoring oxygen stoichiometry. Applied Physics Letters 105, 242401 (2014).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...