A combination of GRA3, GRA6 and GRA7 peptides offer a useful tool for serotyping type II and III Toxoplasma gondii infections in sheep and pigs
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38720960
PubMed Central
PMC11076764
DOI
10.3389/fcimb.2024.1384393
Knihovny.cz E-zdroje
- Klíčová slova
- GRA, Toxoplasma gondii, peptide, pig, serotyping, sheep,
- MeSH
- antigeny protozoální * genetika imunologie MeSH
- ELISA metody MeSH
- genotyp MeSH
- nemoci ovcí * parazitologie diagnóza MeSH
- nemoci prasat * parazitologie diagnóza MeSH
- ovce MeSH
- peptidy imunologie MeSH
- prasata MeSH
- protilátky protozoální krev MeSH
- sérotypizace * metody MeSH
- toxoplazmóza zvířat * diagnóza parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny protozoální * MeSH
- GRA6 protein, Toxoplasma gondii MeSH Prohlížeč
- GRA7 protein, Toxoplasma gondii MeSH Prohlížeč
- peptidy MeSH
- protilátky protozoální MeSH
The clinical consequences of toxoplasmosis are greatly dependent on the Toxoplasma gondii strain causing the infection. To better understand its epidemiology and design appropriate control strategies, it is important to determine the strain present in infected animals. Serotyping methods are based on the detection of antibodies that react against segments of antigenic proteins presenting strain-specific polymorphic variations, offering a cost-effective, sensitive, and non-invasive alternative to genotyping techniques. Herein, we evaluated the applicability of a panel of peptides previously characterized in mice and humans to serotype sheep and pigs. To this end, we used 51 serum samples from experimentally infected ewes (32 type II and 19 type III), 20 sheep samples from naturally infected sheep where the causative strain was genotyped (18 type II and 2 type III), and 40 serum samples from experimentally infected pigs (22 type II and 18 type III). Our ELISA test results showed that a combination of GRA peptide homologous pairs can discriminate infections caused by type II and III strains of T. gondii in sheep and pigs. Namely, the GRA3-I/III-43 vs. GRA3-II-43, GRA6-I/III-213 vs. GRA6-II-214 and GRA6-III-44 vs. GRA6-II-44 ratios showed a statistically significant predominance of the respective strain-type peptide in sheep, while in pigs, in addition to these three peptide pairs, GRA7-II-224 vs. GRA7-III-224 also showed promising results. Notably, the GRA6-44 pair, which was previously deemed inefficient in mice and humans, showed a high prediction capacity, especially in sheep. By contrast, GRA5-38 peptides failed to correctly predict the strain type in most sheep and pig samples, underpinning the notion that individual standardization is needed for each animal species. Finally, we recommend analyzing for each animal at least 2 samples taken at different time points to confirm the obtained results.
Central European Institute of Technology University of Veterinary Sciences Brno Czechia
Faculty of Veterinary Medicine University of Veterinary Sciences Brno Czechia
Laboratory of Apicomplexan Biology Institut Pasteur de Montevideo Montevideo Uruguay
Zobrazit více v PubMed
Aguirre A. A., Longcore T., Barbieri M., Dabritz H., Hill D., Klein P. N., et al. . (2019). The one health approach to toxoplasmosis: epidemiology, control, and prevention strategies. Ecohealth 16, 378–390. doi: 10.1007/s10393-019-01405-7 PubMed DOI PMC
Almeria S., Dubey J. P. (2021). Foodborne transmission of Toxoplasma gondii infection in the last decade. An overview. Res. Veterinary Sci. 135, 371–385. doi: 10.1016/j.rvsc.2020.10.019 PubMed DOI
Arranz-Solís D., Carvalheiro C. G., Zhang E. R., Grigg M. E., Saeij J. P. J. (2021). Toxoplasma GRA peptide-specific serologic fingerprints discriminate among major strains causing toxoplasmosis. Front. Cell Infect. Microbiol. 11. doi: 10.3389/fcimb.2021.621738 PubMed DOI PMC
Arranz-Solís D., Cordeiro C., Young L. H., Dardé M. L., Commodaro A. G., Grigg M. E., et al. . (2019). Serotyping of Toxoplasma gondii infection using peptide membrane arrays. Front. Cell Infect. Microbiol. 9. doi: 10.3389/fcimb.2019.00408 PubMed DOI PMC
Belluco S., Mancin M., Conficoni D., Simonato G., Pietrobelli M., Ricci A. (2016). Investigating the determinants of Toxoplasma gondii prevalence in meat: A systematic review and meta-regression. PloS One 11, e0153856. doi: 10.1371/journal.pone.0153856 PubMed DOI PMC
Belluco S., Simonato G., Mancin M., Pietrobelli M., Ricci A. (2018). Toxoplasma gondii infection and food consumption: A systematic review and meta-analysis of case-controlled studies. Crit. Rev. Food Sci. Nutr. 58, 3085–3096. doi: 10.1080/10408398.2017.1352563 PubMed DOI
Castaño P., Fuertes M., Ferre I., Fernández M., Ferreras M., del C., et al. . (2014). Placental thrombosis in acute phase abortions during experimental Toxoplasma gondii infection in sheep. Vet. Res. 45, 9. doi: 10.1186/1297-9716-45-9 PubMed DOI PMC
Chaichan P., Mercier A., Galal L., Mahittikorn A., Ariey F., Morand S., et al. . (2017). Geographical distribution of Toxoplasma gondii genotypes in Asia: A link with neighboring continents. Infect. Genet. Evol. 53, 227–238. doi: 10.1016/j.meegid.2017.06.002 PubMed DOI
Dard C., Fricker-Hidalgo H., Brenier-Pinchart M. P., Pelloux H. (2016). Relevance of and new developments in serology for toxoplasmosis. Trends Parasitol. 32, 492–506. doi: 10.1016/j.pt.2016.04.001 PubMed DOI
Dubey J. P., Vianna M. C. B., Sousa S., Canada N., Meireles S., Costa J. M. C., et al. . (2006). Characterization of Toxoplasma gondii isolates in free-range chickens from Portugal. para 92, 184–186. doi: 10.1645/GE-652R.1 PubMed DOI
Fernández-Escobar M., Calero-Bernal R., Benavides J., Regidor-Cerrillo J., Guerrero-Molina M. C., Gutiérrez-Expósito D., et al. . (2020). Isolation and genetic characterization of Toxoplasma gondii in Spanish sheep flocks. Parasit Vectors 13, 396. doi: 10.1186/s13071-020-04275-z PubMed DOI PMC
Fernández-Escobar M., Schares G., Maksimov P., Joeres M., Ortega-Mora L. M., Calero-Bernal R. (2022). Toxoplasma gondii genotyping: A closer look into Europe. Front. Cell Infect. Microbiol. 12. doi: 10.3389/fcimb.2022.842595 PubMed DOI PMC
Galal L., Ajzenberg D., Hamidović A., Durieux M.-F., Dardé M.-L., Mercier A. (2018). Toxoplasma and Africa: one parasite, two opposite population structures. Trends Parasitol. 34, 140–154. doi: 10.1016/j.pt.2017.10.010 PubMed DOI
Hamilton C. M., Black L., Oliveira S., Burrells A., Bartley P. M., Melo R. P. B., et al. . (2019). Comparative virulence of Caribbean, Brazilian and European isolates of Toxoplasma gondii . Parasit Vectors 12, 104. doi: 10.1186/s13071-019-3372-4 PubMed DOI PMC
Joeres M., Maksimov P., Höper D., Calvelage S., Calero-Bernal R., Fernández-Escobar M., et al. . (2024). Genotyping of European Toxoplasma gondii strains by a new high-resolution next-generation sequencing-based method. Eur. J. Clin. Microbiol. Infect. Dis. 43, 355–371. doi: 10.1007/s10096-023-04721-7 PubMed DOI PMC
Khan A., Dubey J. P., Su C., Ajioka J. W., Rosenthal B. M., Sibley L. D. (2011). Genetic analyses of atypical Toxoplasma gondii strains reveal a fourth clonal lineage in North America. Int. J. Parasitol. 41, 645–655. doi: 10.1016/j.ijpara.2011.01.005 PubMed DOI PMC
Kong J., Grigg M. E., Uyetake L., Parmley S., Boothroyd J. C. (2003). Serotyping of Toxoplasma gondii infections in Humans Using Synthetic Peptides. J. Infect. Dis. 187, 1484–1495. doi: 10.1086/374647 PubMed DOI
Largo-de la Torre A., Diezma-Díaz C., Calero-Bernal R., Atencia-Cibreiro G., Sánchez-Sánchez R., Ferre I., et al. . (2022). Archetypal type II and III Toxoplasma gondii oocysts induce different immune responses and clinical outcomes in experimentally infected piglets. Front. Immunol. 13. doi: 10.3389/fimmu.2022.1021556 PubMed DOI PMC
López-Ureña N. M., Calero-Bernal R., González-Fernández N., Blaga R., Koudela B., Ortega-Mora L. M., et al. . (2023). Optimization of the most widely used serological tests for a harmonized diagnosis of Toxoplasma gondii infection in domestic pigs. Veterinary Parasitol. 322, 110024. doi: 10.1016/j.vetpar.2023.110024 PubMed DOI
Lorenzi H., Khan A., Behnke M. S., Namasivayam S., Swapna L. S., Hadjithomas M., et al. . (2016). Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat. Commun. 7. doi: 10.1038/ncomms10147 PubMed DOI PMC
Maksimov P., Basso W., Zerweck J., Schutkowski M., Reimer U., Maksimov A., et al. . (2018). Analysis of Toxoplasma gondii clonal type-specific antibody reactions in experimentally infected Turkeys and chickens. Int. J. Parasitol. 48, 845–856. doi: 10.1016/j.ijpara.2018.04.004 PubMed DOI
Maksimov P., Zerweck J., Dubey J. P., Pantchev N., Frey C. F., Maksimov A., et al. . (2013). Serotyping of Toxoplasma gondii in cats (Felis domesticus) reveals predominance of type II infections in Germany. PloS One 8, 1–16. doi: 10.1371/journal.pone.0080213 PubMed DOI PMC
Maksimov P., Zerweck J., Maksimov A., Hotop A., Groß U., Pleyer U., et al. . (2012. a). Peptide microarray analysis of in silico -predicted epitopes for serological diagnosis of Toxoplasma gondii infection in humans. Clin. Vaccine Immunol. 19, 865–874. doi: 10.1128/CVI.00119-12 PubMed DOI PMC
Maksimov P., Zerweck J., Maksimov A., Hotop A., Groß U., Spekker K., et al. . (2012. b). Analysis of clonal type-specific antibody reactions in Toxoplasma gondii seropositive humans from Germany by peptide-microarray. PloS One 7, 1–10. doi: 10.1371/journal.pone.0034212 PubMed DOI PMC
McLeod R., Boyer K. M., Lee D., Mui E., Wroblewski K., Karrison T., et al. . (2012). Prematurity and severity are associated with toxoplasma gondii alleles (NCCCTS 1981-2009). Clin. Infect. Dis. 54, 1595–1605. doi: 10.1093/cid/cis258 PubMed DOI PMC
Mukhopadhyay D., Arranz-Solís D., Saeij J. P. J. (2020). Influence of the host and parasite strain on the immune response during Toxoplasma infection. Front. Cell Infect. Microbiol. 10. doi: 10.3389/fcimb.2020.580425 PubMed DOI PMC
Peyron F., Lobry J. R., Musset K., Ferrandiz J., Gomez-Marin J. E., Petersen E., et al. . (2006). Serotyping of Toxoplasma gondii in chronically infected pregnant women: predominance of type II in Europe and types I and III in Colombia (South America). Microbes Infection 8, 2333–2340. doi: 10.1016/j.micinf.2006.03.023 PubMed DOI
Sánchez-Sánchez R., Ferre I., Regidor-Cerrillo J., Gutiérrez-Expósito D., Ferrer L. M., Arteche-Villasol N., et al. . (2019). Virulence in mice of a Toxoplasma gondii type II isolate does not correlate with the outcome of experimental infection in pregnant sheep. Front. Cell. Infect. Microbiol. 8. doi: 10.3389/fcimb.2018.00436 PubMed DOI PMC
Sánchez-Sánchez R., Imhof D., Hecker Y. P., Ferre I., Re M., Moreno-Gonzalo J., et al. . (2023). An early treatment with BKI-1748 exhibits full protection against abortion and congenital infection in sheep experimentally infected with Toxoplasma gondii . J. Infect. Dis. 229 (2), 558–566. doi: 10.1093/infdis/jiad470 PubMed DOI PMC
Shwab E. K., Jiang T., Pena H. F. J., Gennari S. M., Dubey J. P., Su C. (2016). The ROP18 and ROP5 gene allele types are highly predictive of virulence in mice across globally distributed strains of Toxoplasma gondii . Int. J. Parasitol. 46, 141–146. doi: 10.1016/j.ijpara.2015.10.005 PubMed DOI
Sousa S., Ajzenberg D., Canada N., Freire L., da J. M. C., Dardé M. L., et al. . (2006). Biologic and molecular characterization of Toxoplasma gondii isolates from pigs from Portugal. Veterinary Parasitol. 135, 133–136. doi: 10.1016/j.vetpar.2005.08.012 PubMed DOI
Sousa S., Ajzenberg D., Marle M., Aubert D., Villena I., Da Costa J. C., et al. . (2009). Selection of polymorphic peptides from GRA6 and GRA7 sequences of Toxoplasma gondii strains to be used in serotyping. Clin. Vaccine Immunol. 16, 1158–1169. doi: 10.1128/CVI.00092-09 PubMed DOI PMC
Sousa S., Ajzenberg D., Vilanova M., Costa J., Darde M. L. (2008). Use of GRA6-derived synthetic polymorphic peptides in an immunoenzymatic assay to serotype Toxoplasma gondii in human serum samples collected from three continents. Clin. Vaccine immunology: CVI 15, 1380–1386. doi: 10.1128/CVI.00186-08 PubMed DOI PMC
Sousa S., Canada N., Correia da Costa J. M., Dardé M.-L. L. (2010). Serotyping of naturally Toxoplasma gondii infected meat-producing animals. Veterinary Parasitol. 169, 24–28. doi: 10.1016/j.vetpar.2009.12.025 PubMed DOI
Sousa S., Fernandes M., Correia da Costa J. M. (2023). Serotyping, a challenging approach for Toxoplasma gondii typing. Front. Med. (Lausanne) 10. doi: 10.3389/fmed.2023.1111509 PubMed DOI PMC
Stelzer S., Basso W., Benavides Silván J., Ortega-Mora L. M., Maksimov P., Gethmann J., et al. . (2019). Toxoplasma gondii infection and toxoplasmosis in farm animals: Risk factors and economic impact. Food Waterborne Parasitol. 15, e00037. doi: 10.1016/j.fawpar.2019.e00037 PubMed DOI PMC
Su C., Dubey J. P., Ajzenberg D., Khan A., Ajioka J. W., Rosenthal B. M., et al. . (2012). Globally diverse Toxoplasma gondii isolates comprise six major clades originating from a small number of distinct ancestral lineages. Proc. Natl. Acad. Sci. 109, 5844–5849. doi: 10.1073/pnas.1203190109 PubMed DOI PMC
Vallejo R., Benavides J., Arteche-Villasol N., Sánchez-Sánchez R., Calero-Bernal R., Ferreras M. C., et al. . (2023). Experimental infection of sheep at mid-pregnancy with archetypal type II and type III Toxoplasma gondii isolates exhibited different phenotypic traits. Vet. Parasitol. 315, 109889. doi: 10.1016/j.vetpar.2023.109889 PubMed DOI