Genotyping of European Toxoplasma gondii strains by a new high-resolution next-generation sequencing-based method
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38099986
PubMed Central
PMC10822014
DOI
10.1007/s10096-023-04721-7
PII: 10.1007/s10096-023-04721-7
Knihovny.cz E-zdroje
- Klíčová slova
- Discriminatory power, Highly polymorphic regions, Intra-genotype variability, Multilocus sequence typing, Toxoplasmosis, Typing,
- MeSH
- genetická variace MeSH
- genotyp MeSH
- lidé MeSH
- multiplexová polymerázová řetězová reakce MeSH
- polymorfismus délky restrikčních fragmentů MeSH
- protozoální DNA genetika MeSH
- těhotenství MeSH
- Toxoplasma * genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální DNA MeSH
PURPOSE: A new high-resolution next-generation sequencing (NGS)-based method was established to type closely related European type II Toxoplasma gondii strains. METHODS: T. gondii field isolates were collected from different parts of Europe and assessed by whole genome sequencing (WGS). In comparison to ME49 (a type II reference strain), highly polymorphic regions (HPRs) were identified, showing a considerable number of single nucleotide polymorphisms (SNPs). After confirmation by Sanger sequencing, 18 HPRs were used to design a primer panel for multiplex PCR to establish a multilocus Ion AmpliSeq typing method. Toxoplasma gondii isolates and T. gondii present in clinical samples were typed with the new method. The sensitivity of the method was tested with serially diluted reference DNA samples. RESULTS: Among type II specimens, the method could differentiate the same number of haplotypes as the reference standard, microsatellite (MS) typing. Passages of the same isolates and specimens originating from abortion outbreaks were identified as identical. In addition, seven different genotypes, two atypical and two recombinant specimens were clearly distinguished from each other by the method. Furthermore, almost all SNPs detected by the Ion AmpliSeq method corresponded to those expected based on WGS. By testing serially diluted DNA samples, the method exhibited a similar analytical sensitivity as MS typing. CONCLUSION: The new method can distinguish different T. gondii genotypes and detect intra-genotype variability among European type II T. gondii strains. Furthermore, with WGS data additional target regions can be added to the method to potentially increase typing resolution.
Bavarian Health and Food Safety Authority Erlangen Germany
Central European Institute of Technology University of Veterinary Sciences Brno Brno Czech Republic
Centre National de Référence Toxoplasmose Centre Hospitalier Universitaire Dupuytren Limoges France
Centre of Epidemiology and Microbiology National Institute of Public Health Prague Czech Republic
Chemisches und Veterinäruntersuchungsamt Westfalen Standort Arnsberg Arnsberg Germany
Department of Analysis and Diagnostics Norwegian Veterinary Institute Ås Norway
Department of Animal Health Welfare and Food Safety Norwegian Veterinary Institute Tromsø Norway
Department of Microbiology National Veterinary Institute Uppsala Sweden
Faculty of Veterinary Medicine University of Veterinary Sciences Brno Brno Czech Republic
German Federal Institute for Risk Assessment Department for Biological Safety Berlin Germany
IDEXX Laboratories Kornwestheim Germany
Infectious Disease Preparedness Statens Serum Institut Copenhagen Denmark
Institute of Parasitology Vetsuisse Faculty University of Bern Bern Switzerland
Italian National Institute of Health Rome Italy
Landeslabor Berlin Brandenburg Frankfurt Germany
Parasitology Laboratory Instituto Nacional de Investigação Agrária e Veterinária Oeiras Portugal
University of Agricultural Sciences and Veterinary Medicine Cluj Napoca Romania
Veterinary Research Institute Hellenic Agricultural Organisation DIMITRA Thessaloniki Greece
Zobrazit více v PubMed
Schlüter D, Däubener W, Schares G, et al. Animals are key to human toxoplasmosis. Int J Med Microbiol. 2014;304:917–929. doi: 10.1016/j.ijmm.2014.09.002. PubMed DOI
Robert-Gangneux F, Dardé M-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin Microbiol Rev. 2012;25:264–296. doi: 10.1128/CMR.05013-11. PubMed DOI PMC
Dubey JP. Toxoplasmosis of animals and humans. Third. Boca Raton: CRC Press; 2022.
Stelzer S, Basso W, Benavides Silván J, et al. Toxoplasma gondii infection and toxoplasmosis in farm animals: risk factors and economic impact. Food Waterborne Parasitol. 2019;15:e00037. doi: 10.1016/j.fawpar.2019.e00037. PubMed DOI PMC
Dámek F, Swart A, Waap H, et al. Systematic review and modelling of age-dependent prevalence of Toxoplasma gondii in livestock, wildlife and felids in Europe. Pathogens. 2023;12:97. doi: 10.3390/pathogens12010097. PubMed DOI PMC
Bouwknegt M, Devleesschauwer B, Graham H, et al. Prioritisation of food-borne parasites in Europe, 2016. Euro Surveill. 2018;23:17-00161. doi: 10.2807/1560-7917.ES.2018.23.9.17-00161. PubMed DOI PMC
Galal L, Hamidović A, Dardé ML, et al. Diversity of Toxoplasma gondii strains at the global level and its determinants. Food Waterborne Parasitol. 2019;15:e00052. doi: 10.1016/j.fawpar.2019.e00052. PubMed DOI PMC
Fernández-Escobar M, Schares G, Maksimov P, et al. Toxoplasma gondii Genotyping: A Closer Look Into Europe. Front Cell Infect Microbiol. 2022;12:842595. doi: 10.3389/fcimb.2022.842595. PubMed DOI PMC
Lorenzi H, Khan A, Behnke MS, et al. Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes. Nat Commun. 2016;7:10147. doi: 10.1038/ncomms10147. PubMed DOI PMC
Ajzenberg D, Collinet F, Mercier A, et al. Genotyping of Toxoplasma gondii isolates with 15 microsatellite markers in a single multiplex PCR assay. J Clin Microbiol. 2010;48:4641–4645. doi: 10.1128/JCM.01152-10. PubMed DOI PMC
Joeres M, Cardron G, Passebosc-Faure K, et al. A ring trial to harmonize Toxoplasma gondii microsatellite typing: comparative analysis of results and recommendations for optimization. Eur J Clin Microbiol Infect Dis. 2023;42:803–818. doi: 10.1007/s10096-023-04597-7. PubMed DOI PMC
Su C, Zhang X, Dubey JP. Genotyping of Toxoplasma gondii by multilocus PCR-RFLP markers: a high resolution and simple method for identification of parasites. Int J Parasitol. 2006;36:841–848. doi: 10.1016/j.ijpara.2006.03.003. PubMed DOI
Khan A, Fux B, Su C, et al. Recent transcontinental sweep of Toxoplasma gondii driven by a single monomorphic chromosome. Proc Natl Acad Sci U S A. 2007;104:14872–14877. doi: 10.1073/pnas.0702356104. PubMed DOI PMC
Bertranpetit E, Jombart T, Paradis E, et al. Phylogeography of Toxoplasma gondii points to a South American origin. Infect Genet Evol. 2017;48:150–155. doi: 10.1016/j.meegid.2016.12.020. PubMed DOI
Su C, Shwab EK, Zhou P, et al. Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology. 2010;137:1–11. doi: 10.1017/S0031182009991065. PubMed DOI
Vilares A, Borges V, Sampaio D, et al. Towards a rapid sequencing-based molecular surveillance and mosaicism investigation of Toxoplasma gondii. Parasitol Res. 2020;119:587–599. doi: 10.1007/s00436-019-06523-3. PubMed DOI
Galal L, Ariey F, Gouilh MA, et al. A unique Toxoplasma gondii haplotype accompanied the global expansion of cats. Nat Commun. 2022;13:5778. doi: 10.1038/s41467-022-33556-7. PubMed DOI PMC
Shwab EK, Saraf P, Zhu X-Q, et al. Human impact on the diversity and virulence of the ubiquitous zoonotic parasite Toxoplasma gondii. Proc Natl Acad Sci U S A. 2018;115:E6956–E6963. doi: 10.1073/pnas.1722202115. PubMed DOI PMC
Fernández-Escobar M, Calero-Bernal R, Regidor-Cerrillo J, et al. Isolation, genotyping, and mouse virulence characterization of Toxoplasma gondii from free ranging iberian pigs. Front Vet Sci. 2020;7:604782. doi: 10.3389/fvets.2020.604782. PubMed DOI PMC
Schares G, Bangoura B, Randau F, et al. High seroprevalence of Toxoplasma gondii and probability of detecting tissue cysts in backyard laying hens compared with hens from large free-range farms. Int J Parasitol. 2017;47:765–777. doi: 10.1016/j.ijpara.2017.07.003. PubMed DOI
Talabani H, Asseraf M, Yera H, et al. Contributions of immunoblotting, real-time PCR, and the Goldmann-Witmer coefficient to diagnosis of atypical toxoplasmic retinochoroiditis. J Clin Microbiol. 2009;47:2131–2135. doi: 10.1128/JCM.00128-09. PubMed DOI PMC
Schares G, Joeres M, Rachel F, et al. Molecular analysis suggests that Namibian cheetahs (Acinonyx jubatus) are definitive hosts of a so far undescribed Besnoitia species. Parasit Vectors. 2021;14:201. doi: 10.1186/s13071-021-04697-3. PubMed DOI PMC
Herrmann DC, Pantchev N, Vrhovec MG, et al. Atypical Toxoplasma gondii genotypes identified in oocysts shed by cats in Germany. Int J Parasitol. 2010;40:285–292. doi: 10.1016/j.ijpara.2009.08.001. PubMed DOI
Wylezich C, Papa A, Beer M, et al. A versatile sample processing workflow for metagenomic pathogen detection. Sci Rep. 2018;8:13108. doi: 10.1038/s41598-018-31496-1. PubMed DOI PMC
Okonechnikov K, Conesa A, García-Alcalde F. Qualimap 2: advanced multi-sample quality control for high-throughput sequencing data. Bioinformatics. 2016;32:292–294. doi: 10.1093/bioinformatics/btv566. PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC
Page AJ, Taylor B, Delaney AJ et al (2016) SNP-sites: rapid efficient extraction of SNPs from multi-FASTA alignments. Microb Genom 2. 10.1099/mgen.0.000056 PubMed PMC
Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–267. doi: 10.1093/molbev/msj030. PubMed DOI
Khan A, Shaik JS, Behnke M, et al. NextGen sequencing reveals short double crossovers contribute disproportionately to genetic diversity in Toxoplasma gondii. BMC Genom. 2014;15:1168. doi: 10.1186/1471-2164-15-1168. PubMed DOI PMC
Khan A, Jordan C, Muccioli C, et al. Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerg Infect Dis. 2006;12:942–949. doi: 10.3201/eid1206.060025. PubMed DOI PMC
Galal L, Ajzenberg D, Hamidović A, et al. Toxoplasma and Africa: one parasite, two opposite population structures. Trends Parasitol. 2018;34:140–154. doi: 10.1016/j.pt.2017.10.010. PubMed DOI
Contreras SM, Zambrano Siri RT, Rivera EM, et al. Architecture, chromatin and gene organization of Toxoplasma gondii subtelomeres. Epigenomes. 2022;6:29. doi: 10.3390/epigenomes6030029. PubMed DOI PMC
Crossley BM, Bai J, Glaser A, et al. Guidelines for Sanger sequencing and molecular assay monitoring. J Vet Diagn Invest. 2020;32:767–775. doi: 10.1177/1040638720905833. PubMed DOI PMC
Quail MA, Smith M, Coupland P, et al. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom. 2012;13:341. doi: 10.1186/1471-2164-13-341. PubMed DOI PMC
Escalona M, Rocha S, Posada D. A comparison of tools for the simulation of genomic next-generation sequencing data. Nat Rev Genet. 2016;17:459–469. doi: 10.1038/nrg.2016.57. PubMed DOI PMC
Uelze L, Borowiak M, Bönn M, et al. German-wide interlaboratory study compares consistency, accuracy and reproducibility of whole-genome short read sequencing. Front Microbiol. 2020;11:573972. doi: 10.3389/fmicb.2020.573972. PubMed DOI PMC
Boyle JP, Rajasekar B, Saeij JPJ, et al. Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii. Proc Natl Acad Sci U S A. 2006;103:10514–10519. doi: 10.1073/pnas.0510319103. PubMed DOI PMC