The Glucocorticoid Receptor Polymorphism Landscape in Patients With Diamond Blackfan Anemia Reveals an Association Between Two Clinically Relevant Single Nucleotide Polymorphisms and Time to Diagnosis
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
Grant support
P01 CA108671
NCI NIH HHS - United States
R01 HL134684
NHLBI NIH HHS - United States
PubMed
34721069
PubMed Central
PMC8549833
DOI
10.3389/fphys.2021.745032
Knihovny.cz E-resources
- Keywords
- Diamond Blackfan anemia, glucocorticoid receptor, glucocorticoid response, single nucleotide polymorphisms, time to diagnosis,
- Publication type
- Journal Article MeSH
NR3C1, the gene encoding the glucocorticoid receptor, is polymorphic presenting numerous single nucleotide polymorphisms (SNPs) some of which are emerging as leading cause in the variability of manifestation and/or response to glucocorticoids in human diseases. Since 60-80% of patients with Diamond Blackfan anemia (DBA), an inherited pure red cell aplasia induced by mutations in ribosomal protein genes became transfusion independent upon treatment with glucocorticoids, we investigated whether clinically relevant NR3C1 SNPs are associated with disease manifestation in DBA. The eight SNPs rs10482605, rs10482616, rs7701443, rs6189/rs6190, rs860457, rs6198, rs6196, and rs33388/rs33389 were investigated in a cohort of 91 European DBA patients. Results were compared with those observed in healthy volunteers (n=37) or present in public genome databases of Italian and European populations. Although, cases vs. control analyses suggest that the frequency of some of the minor alleles is significantly altered in DBA patients with respect to healthy controls or to the Italian or other European registries, lack of consistency among the associations across different sets suggests that overall the frequency of these SNPs in DBA is not different from that of the general population. Demographic data (47 females and 31 males) and driver mutations (44 S and 29 L genes and eight no-known mutation) are known for 81 patients while glucocorticoid response is known, respectively, for 81 (36 responsive and 45 non-responsive) and age of disease onsets for 79 (55 before and 24 after 4months of age) patients. Neither gender nor leading mutations were associated with the minor alleles or with disease manifestation. In addition, none of the SNPs met the threshold in the response vs. non-responsive groups. However, two SNPs (rs6196 and rs860457) were enriched in patients manifesting the disease before 4months of age. Although the exact biomechanistical consequences of these SNPs are unknown, the fact that their configuration is consistent with that of regulatory regions suggests that they regulate changes in glucocorticoid response during ontogeny. This hypothesis was supported by phosphoproteomic profiling of erythroid cells expanded ex vivo indicating that glucocorticoids activate a ribosomal signature in cells from cord blood but not in those from adult blood, possibly providing a compensatory mechanism to the driving mutations observed in DBA before birth.
Department of Biomedical and Neuromotor Sciences University of Bologna Bologna Italy
Department of Health Sciences Università del Piemonte Orientale Novara Italy
Department of Pediatrics Faculty Hospital of Palacky University Olomouc Czechia
Department of Public Health and Pediatric Sciences University of Turin Turin Italy
Faculty of Medicine and Surgery University Campus Bio Medico Rome Italy
Giorgio Prodi Cancer Research Center University of Bologna Bologna Italy
Service d'Hématologie Biologique Hôpital Robert Debré University of Paris Paris France
See more in PubMed
Anacker C., Cattaneo A., Musaelyan K., Zunszain P. A., Horowitz M., Molteni R., et al. . (2013). Role for the kinase SGK1 in stress, depression, and glucocorticoid effects on hippocampal neurogenesis. Proc. Natl. Acad. Sci. U. S. A. 110, 8708–8713. doi: 10.1073/pnas.1300886110, PMID: PubMed DOI PMC
Ash G. I., Kostek M. A., Lee H., Angelopoulos T. J., Clarkson P. M., Gordon P. M., et al. . (2016). Glucocorticoid receptor (NR3C1) variants associate with the muscle strength and size response to resistance training. PLoS One 11:e0148112. doi: 10.1371/journal.pone.0148112, PMID: PubMed DOI PMC
Ashley R. J., Yan H., Wang N., Hale J., Dulmovits B. M., Papoin J., et al. . (2020). Steroid resistance in diamond Blackfan anemia associates with p57Kip2 dysregulation in erythroid progenitors. J. Clin. Invest. 130, 2097–2110. doi: 10.1172/JCI132284, PMID: PubMed DOI PMC
Aspesi A., Monteleone V., Betti M., Actis C., Morleo G., Sculco M., et al. . (2017). Lymphoblastoid cell lines from diamond Blackfan anaemia patients exhibit a full ribosomal stress phenotype that is rescued by gene therapy. Sci. Rep. 7:12010. doi: 10.1038/s41598-017-12307-5, PMID: PubMed DOI PMC
Aspesi A., Pavesi E., Robotti E., Crescitelli R., Boria I., Avondo F., et al. . (2014). Dissecting the transcriptional phenotype of ribosomal protein deficiency: implications for diamond-Blackfan Anemia. Gene 545, 282–289. doi: 10.1016/j.gene.2014.04.077, PMID: PubMed DOI PMC
Balaban E. P., Buchanan G. R., Graham M., Frenkel E. P. (1985). Diamond-Blackfan syndrome in adult patients. Am. J. Med. 78, 533–538. doi: 10.1016/0002-9343(85)90352-3, PMID: PubMed DOI
Biddie S. C., John S., Sabo P. J., Thurman R. E., Johnson T. A., Schiltz R. L., et al. . (2011). Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell 43, 145–155. doi: 10.1016/j.molcel.2011.06.016, PMID: PubMed DOI PMC
Bohlen J., Fenzl K., Kramer G., Bukau B., Teleman A. A. (2020). Selective 40S footprinting reveals cap-tethered ribosome scanning in human cells. Mol. Cell 79, 561.e5–574.e5. doi: 10.1016/j.molcel.2020.06.005, PMID: PubMed DOI
Catena V., Fanciulli M. (2017). Deptor: not only a mTOR inhibitor. J. Exp. Clin. Cancer Res. 36:12. doi: 10.1186/s13046-016-0484-y, PMID: PubMed DOI PMC
Chen W., Dang T., Blind R. D., Wang Z., Cavasotto C. N., Hittelman A. B., et al. . (2008). Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol. Endocrinol. 22, 1754–1766. doi: 10.1210/me.2007-0219, PMID: PubMed DOI PMC
Da Costa L., Leblanc T., Mohandas N. (2020). Diamond-Blackfan anemia. Blood 136, 1262–1273. doi: 10.1182/blood.2019000947, PMID: PubMed DOI PMC
Derijk R. H., Schaaf M. J. M., Turner G., Datson N. A., Vreugdenhil E., Cidlowski J., et al. . (2001). A human glucocorticoid receptor gene variant that increases the stability of the glucocorticoid receptor β-isoform mRNA is associated with rheumatoid arthritis. J. Rheumatol. 28, 2383–2388. PMID: PubMed
Dutt S., Narla A., Lin K., Mullally A., Abayasekara N., Megerdichian C., et al. . (2011). Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 117, 2567–2576. doi: 10.1182/blood-2010-07-295238, PMID: PubMed DOI PMC
Ellis S. R. (2014). Nucleolar stress in diamond blackfan anemia pathophysiology. Biochim. Biophys. Acta Mol. basis Dis. 1842, 765–768. doi: 10.1016/j.bbadis.2013.12.013, PMID: PubMed DOI
Encio I. J., Detera-Wadleigh S. D. (1991). The genomic structure of the human glucocorticoid receptor. J. Biol. Chem. 266, 7182–7188. doi: 10.1016/S0021-9258(20)89627-6, PMID: PubMed DOI
Falchi M., Varricchio L., Martelli F., Masiello F., Federici G., Zingariello M., et al. . (2015). Dexamethasone targeted directly to macrophages induces macrophage niches that promote erythroid expansion. Haematologica 100, 178–187. doi: 10.3324/haematol.2014.114405, PMID: PubMed DOI PMC
Federici G., Varricchio L., Martelli F., Falchi M., Picconi O., Francescangeli F., et al. . (2019). Phosphoproteomic landscaping identifies non-canonical cKIT signaling in polycythemia vera erythroid progenitors. Front. Oncol. 9:1245. doi: 10.3389/fonc.2019.01245, PMID: PubMed DOI PMC
Francke U., Foellmer B. E. (1989). The glucocorticoid receptor gene is in 5q-q32. Genomics 4, 610–612. doi: 10.1016/0888-7543(89)90287-5, PMID: PubMed DOI
Fumagalli S., Di Cara A., Neb-Gulati A., Natt F., Schwemberger S., Hall J., et al. . (2009). Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translationdependent mechanism of p53 induction. Nat. Cell Biol. 11, 501–508. doi: 10.1038/ncb1858, PMID: PubMed DOI PMC
Horos R., IJspeert H., Pospisilova D., Sendtner R., Andrieu-Soler C., Taskesen E., et al. . (2012). Ribosomal deficiencies in diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood 119, 262–272. doi: 10.1182/blood-2011-06-358200, PMID: PubMed DOI
Jagilinki B. P., Choudhary R. K., Thapa P. S., Gadewal N., Hosur M. V., Kumar S., et al. . (2016). Functional basis and biophysical approaches to characterize the C-terminal domain of human-ribosomal S6 kinases-3. Cell Biochem. Biophys. 74, 317–325. doi: 10.1007/s12013-016-0745-6, PMID: PubMed DOI
Kraemer W. J., Ratamess N. A. (2005). Hormonal responses and adaptations to resistance exercise and training. Sports Med. 35, 339–361. doi: 10.2165/00007256-200535040-00004, PMID: PubMed DOI
Krupoves A., MacK D., Deslandres C., Seidman E., Amre D. K. (2011). Variation in the glucocorticoid receptor gene (NR3C1) may be associated with corticosteroid dependency and resistance in children with Crohn’s disease. Pharmacogenet. Genomics 21, 454–460. doi: 10.1097/FPC.0b013e3283476a01, PMID: PubMed DOI
Liang R., Rimmelé P., Bigarella C. L., Yalcin S., Ghaffari S. (2016). Evidence for AKT-independent regulation of FOXO1 and FOXO3 in haematopoietic stem and progenitor cells. Cell Cycle 15, 861–867. doi: 10.1080/15384101.2015.1123355, PMID: PubMed DOI PMC
Ludwig L. S., Gazda H. T., Eng J. C., Eichhorn S. W., Thiru P., Ghazvinian R., et al. . (2014). Altered translation of GATA1 in diamond-Blackfan anemia. Nat. Med. 20, 748–753. doi: 10.1038/nm.3557, PMID: PubMed DOI PMC
McKinney-Freeman S., Cahan P., Li H., Lacadie S. A., Huang H.-T., Curran M., et al. . (2012). The transcriptional landscape of hematopoietic stem cell ontogeny. Cell Stem Cell 11, 701–714. doi: 10.1016/j.stem.2012.07.018, PMID: PubMed DOI PMC
Migliaccio G., Di Pietro R., Di Giacomo V., Di Baldassarre A., Migliaccio A. R., Maccioni L., et al. . (2002). In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients. Blood Cells Mol. Dis. 28, 169–180. doi: 10.1006/bcmd.2002.0502, PMID: PubMed DOI
Migliaccio G., Masiello F., Tirelli V., Sanchez M., Varricchio L., Whitsett C., et al. . (2011). Under HEMA conditions, self-replication of human erythroblasts is limited by autophagic death. Blood Cells Mol. Dis. 47, 182–197. doi: 10.1016/j.bcmd.2011.06.001, PMID: PubMed DOI
Migliaccio A. R., Masselli E., Varricchio L., Whitsett C. (2012). Ex-vivo expansion of red blood cells: how real for transfusion in humans? Blood Rev. 26, 81–95. doi: 10.1016/j.blre.2011.11.002, PMID: PubMed DOI PMC
Moniz H., Gastou M., Leblanc T., Hurtaud C., Crétien A., Lécluse Y., et al. . (2012). Primary hematopoietic cells from DBA patients with mutations in RPL11 and RPS19 genes exhibit distinct erythroid phenotype in vitro. Cell Death Dis. 3:e356. doi: 10.1038/cddis.2012.88, PMID: PubMed DOI PMC
Morita M., Gravel S.-P., Hulea L., Larsson O., Pollak M., St-Pierre J., et al. . (2015). mTOR coordinates protein synthesis, mitochondrial activity and proliferation. Cell Cycle 14, 473–480. doi: 10.4161/15384101.2014.991572, PMID: PubMed DOI PMC
Musa J., Orth M. F., Dallmayer M., Baldauf M., Pardo C., Rotblat B., et al. . (2016). Eukaryotic initiation factor 4E-binding protein 1 (4E-BP1): a master regulator of mRNA translation involved in tumorigenesis. Oncogene 35, 4675–4688. doi: 10.1038/onc.2015.515, PMID: PubMed DOI
Papayannopoulou T., Brice M., Stamatoyannopoulos G. (1986). Analysis of human hemoglobin switching in MEL × human fetal erythroid cell hybrids. Cell 46, 469–476. doi: 10.1016/0092-8674(86)90667-7, PMID: PubMed DOI
Papayannopoulou T., Migliaccio A. R. (2018). “Biology of erythropoiesis, erythroid differentiation, and maturation,” in Hematology. 7th Edn. eds. Hoffman R., Benz E., Silberstein L. E., Heslop E. E., Weitz J. L., Anastasi J., et al.. (Philadelphia, PA: Churchill Livingstone Elsevier; ), 297–320.
Piotrowski P., Burzyński M., Lianeri M., Mostowska M., Wudarski M., Chwalińska-Sadowska H., et al. . (2007). Glucocorticoid receptor beta splice variant expression in patients with high and low activity of systemic lupus erythematosus. Folia Histochem. Cytobiol. 45, 339–342. doi: 10.5603/4505, PMID: PubMed DOI
Poletto V., Rosti V., Villani L., Catarsi P., Carolei A., Campanelli R., et al. . (2012). A3669G polymorphism of glucocorticoid receptor is a susceptibility allele for primary myelofibrosis and contributes to phenotypic diversity and blast transformation. Blood 120, 3112–3117. doi: 10.1182/blood-2012-05-433466, PMID: PubMed DOI PMC
Quarello P., Garelli E., Carando A., Cillario R., Brusco A., Giorgio E., et al. . (2020). A 20-year long term experience of the Italian diamond-Blackfan anaemia registry: RPS and RPL genes, different faces of the same disease? Br. J. Haematol. 190, 93–104. doi: 10.1111/bjh.16508, PMID: PubMed DOI
Rai T., Monoe K., Kanno Y., Saito H., Takahashi A., Irisawa A., et al. . (2006). Expression of human glucocorticoid receptor beta of peripheral blood mononuclear cells in patients with severe autoimmune hepatitis. Fukushima J. Med. Sci. 52, 65–70. doi: 10.5387/fms.52.65, PMID: PubMed DOI
Rivers C., Flynn A., Qian X., Matthews L., Lightman S., Ray D., et al. . (2009). Characterization of conserved tandem donor sites and intronic motifs required for alternative splicing in corticosteroid receptor genes. Endocrinology 150, 4958–4967. doi: 10.1210/en.2009-0346, PMID: PubMed DOI PMC
Rosner M., Fuchs C., Dolznig H., Hengstschläger M. (2011). Different cytoplasmic/nuclear distribution of S6 protein phosphorylated at S240/244 and S235/236. Amino Acids 40, 595–600. doi: 10.1007/s00726-010-0684-2, PMID: PubMed DOI
Spijker A. T., Van Rossum E. F. C. (2009). Glucocorticoid receptor polymorphisms in major depression: focus on glucocorticoid sensitivity and neurocognitive functioning. Ann. N. Y. Acad. Sci. 1179, 199–215. doi: 10.1111/j.1749-6632.2009.04985.x, PMID: PubMed DOI
Trementino L., Appolloni G., Concettoni C., Cardinaletti M., Boscaro M., Arnaldi G. (2012). Association of glucocorticoid receptor polymorphism A3669G with decreased risk of developing diabetes in patients with Cushing’s syndrome. Eur. J. Endocrinol. 166, 35–42. doi: 10.1530/EJE-11-0722, PMID: PubMed DOI
Ulirsch J. C., Verboon J. M., Kazerounian S., Guo M. H., Yuan D., Ludwig L. S., et al. . (2018). The genetic landscape of diamond-Blackfan Anemia. Am. J. Hum. Genet. 103, 930–947. doi: 10.1016/j.ajhg.2018.10.027, PMID: PubMed DOI PMC
Varricchio L., Godbold J., Scott S. A., Whitsett C., Da Costa L., Pospisilova D., et al. . (2011). Increased frequency of the glucocorticoid receptor A3669G (rs6198) polymorphism in patients with diamond-Blackfan anemia. Blood 118, 473–474. doi: 10.1182/blood-2011-03-342139, PMID: PubMed DOI PMC
Varricchio L., Migliaccio A. R. (2014). The role of glucocorticoid receptor (GR) polymorphisms in human erythropoiesis. Am. J. Blood Res. 4, 53–72. PMID: PubMed PMC
Vlachos A., Ball S., Dahl N., Alter B. P., Sheth S., Ramenghi U., et al. . (2008). Diagnosing and treating diamond Blackfan anaemia: results of an international clinical consensus conference. Br. J. Haematol. 142, 859–876. doi: 10.1111/j.1365-2141.2008.07269.x, PMID: PubMed DOI PMC
Walker B. R. (2007). Glucocorticoids and cardiovascular disease. Eur. J. Endocrinol. 157, 545–559. doi: 10.1530/EJE-07-0455, PMID: PubMed DOI
Wang H., Kubica N., Ellisen L. W., Jefferson L. S., Kimball S. R. (2006). Dexamethasone represses signaling through the mammalian target of rapamycin in muscle cells by enhancing expression of REDD1. J. Biol. Chem. 281, 39128–39134. doi: 10.1074/jbc.M610023200, PMID: PubMed DOI
Wiench M., John S., Baek S., Johnson T. A., Sung M. H., Escobar T., et al. . (2011). DNA methylation status predicts cell type-specific enhancer activity. EMBO J. 30, 3028–3039. doi: 10.1038/emboj.2011.210, PMID: PubMed DOI PMC
Wiersma M., Bussiere M., Halsall J. A., Turan N., Slany R., Turner B. M., et al. . (2016). Protein kinase Msk1 physically and functionally interacts with the KMT2A/MLL1 methyltransferase complex and contributes to the regulation of multiple target genes. Epigenetics Chromatin 9:52. doi: 10.1186/s13072-016-0103-3, PMID: PubMed DOI PMC
Zhou J., Cidlowski J. A. (2005). The human glucocorticoid receptor: one gene, multiple proteins and diverse responses. Steroids 70, 407–417. doi: 10.1016/j.steroids.2005.02.006, PMID: PubMed DOI
Zitnik G., Peterson K., Stamatoyannopoulos G., Papayannopoulou T. (1995). Effects of butyrate and glucocorticoids on gamma- to beta-globin gene switching in somatic cell hybrids. Mol. Cell. Biol. 15, 790–795. doi: 10.1128/MCB.15.2.790, PMID: PubMed DOI PMC
Effect of Glucocorticosteroids in Diamond-Blackfan Anaemia: Maybe Not as Elusive as It Seems