Effect of Glucocorticosteroids in Diamond-Blackfan Anaemia: Maybe Not as Elusive as It Seems
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
LM2018133
Czech Ministry of Education, Youth and Sports
ACGT-CZ.02.1.01/0.0/0.0/16_026/0008448
Czech Ministry of Education, Youth and Sports
8F20005
Czech Ministry of Education, Youth and Sports
PerMed TACR TN 01000013
Technological Agency of the Czech Republic
IGA UP LF_2021_019, IGA UP LF_ 2021_038, and IGA_LF_2021_004
Palacky University Olomouc
PubMed
35163808
PubMed Central
PMC8837118
DOI
10.3390/ijms23031886
PII: ijms23031886
Knihovny.cz E-zdroje
- Klíčová slova
- Diamond-Blackfan anaemia, GATA1, autophagy, c-myc, erythropoiesis, glucocorticosteroid, mTOR,
- MeSH
- Diamondova-Blackfanova anemie farmakoterapie metabolismus MeSH
- erytropoéza účinky léků MeSH
- genové regulační sítě účinky léků MeSH
- glukokortikoidy farmakologie terapeutické užití MeSH
- lidé MeSH
- regulace genové exprese účinky léků MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- glukokortikoidy MeSH
Diamond-Blackfan anaemia (DBA) is a red blood cell aplasia that in the majority of cases is associated with ribosomal protein (RP) aberrations. However, the mechanism by which this disorder leads to such a specific phenotype remains unclear. Even more elusive is the reason why non-specific agents such as glucocorticosteroids (GCs), also known as glucocorticoids, are an effective therapy for DBA. In this review, we (1) explore why GCs are successful in DBA treatment, (2) discuss the effect of GCs on erythropoiesis, and (3) summarise the GC impact on crucial pathways deregulated in DBA. Furthermore, we show that GCs do not regulate DBA erythropoiesis via a single mechanism but more likely via several interdependent pathways.
Zobrazit více v PubMed
Bleiber R., Eggert W., Reichmann G., Muhlack D., Andres J. An early childhood erythrocyte phospholipid distribution as further indication of persistence of neonatal erythrocyte characteristics in Diamond-Blackfan anemia. Folia Haematol. 1983;110:71–80. PubMed
Vlachos A., Muir E. How I treat Diamond-Blackfan anemia. Blood. 2010;116:3715–3723. doi: 10.1182/blood-2010-02-251090. PubMed DOI PMC
Vlachos A., Ball S., Dahl N., Alter B.P., Sheth S., Ramenghi U., Meerpohl J., Karlsson S., Liu J.M., Leblanc T., et al. Diagnosing and treating Diamond Blackfan anaemia: Results of an international clinical consensus conference. Br. J. Haematol. 2008;142:859–876. doi: 10.1111/j.1365-2141.2008.07269.x. PubMed DOI PMC
Draptchinskaia N., Gustavsson P., Andersson B., Pettersson M., Willig T.N., Dianzani I., Ball S., Tchernia G., Klar J., Matsson H., et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet. 1999;21:169–175. doi: 10.1038/5951. PubMed DOI
Pospisilova D., Cmejlova J., Ludikova B., Stary J., Cerna Z., Hak J., Timr P., Petrtylova K., Blatny J., Vokurka S., et al. The Czech National Diamond-Blackfan Anemia Registry: Clinical data and ribosomal protein mutations update. Blood Cells Mol. Dis. 2012;48:209–218. doi: 10.1016/j.bcmd.2012.02.002. PubMed DOI
Danilova N., Gazda H.T. Ribosomopathies: How a common root can cause a tree of pathologies. Dis. Model. Mech. 2015;8:1013–1026. doi: 10.1242/dmm.020529. PubMed DOI PMC
Klar J., Khalfallah A., Arzoo P.S., Gazda H.T., Dahl N. Recurrent GATA1 mutations in Diamond-Blackfan anaemia. Br. J. Haematol. 2014;166:949–951. doi: 10.1111/bjh.12919. PubMed DOI
Ulirsch J.C., Verboon J.M., Kazerounian S., Guo M.H., Yuan D., Ludwig L.S., Handsaker R.E., Abdulhay N.J., Fiorini C., Genovese G., et al. The Genetic Landscape of Diamond-Blackfan Anemia. Am. J. Hum. Genet. 2018;103:930–947. doi: 10.1016/j.ajhg.2018.10.027. PubMed DOI PMC
Gripp K.W., Curry C., Olney A.H., Sandoval C., Fisher J., Chong J.X., Pilchman L., Sahraoui R., Stabley D.L., Sol-Church K. Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am. J. Med. Genet. Part A. 2014;164:2240–2249. doi: 10.1002/ajmg.a.36633. PubMed DOI PMC
Cmejlova J., Dolezalova L., Pospisilova D., Petrtylova K., Petrak J., Cmejla R. Translational efficiency in patients with Diamond-Blackfan anemia. Haematologica. 2006;91:1456–1464. PubMed
Gazda H.T., Kho A.T., Sanoudou D., Zaucha J.M., Kohane I.S., Sieff C.A., Beggs A.H. Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia. Stem Cells. 2006;24:2034–2044. doi: 10.1634/stemcells.2005-0554. PubMed DOI PMC
Aspesi A., Monteleone V., Betti M., Actis C., Morleo G., Sculco M., Guarrera S. Author Correction: Lymphoblastoid cell lines from Diamond Blackfan anaemia patients exhibit a full ribosomal stress phenotype that is rescued by gene therapy. Sci. Rep. 2018;8:17227. doi: 10.1038/s41598-018-35522-0. PubMed DOI PMC
Heijnen H.F., van Wijk R., Pereboom T.C., Goos Y.J., Seinen C.W., van Oirschot B.A., van Dooren R., Gastou M., Giles R.H., van Solinge W., et al. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway. PLoS Genet. 2014;10:e1004371. doi: 10.1371/journal.pgen.1004371. PubMed DOI PMC
Morgado-Palacin L., Varetti G., Llanos S., Gómez-López G., Martinez D., Serrano M. Partial Loss of Rpl11 in Adult Mice Recapitulates Diamond-Blackfan Anemia and Promotes Lymphomagenesis. Cell Rep. 2015;13:712–722. doi: 10.1016/j.celrep.2015.09.038. PubMed DOI
Bartels M., Bierings M. How I manage children with Diamond-Blackfan anaemia. Br. J. Haematol. 2019;184:123–133. doi: 10.1111/bjh.15701. PubMed DOI PMC
Harrison C. First gene therapy for β-thalassemia approved. Nat. Biotechnol. 2019;37:1102–1103. doi: 10.1038/d41587-019-00026-3. PubMed DOI
Liu Y., Dahl M., Debnath S., Rothe M., Smith E.M., Grahn T.H.M., Warsi S., Chen J., Flygare J., Schambach A., et al. Successful gene therapy of Diamond-Blackfan anemia in a mouse model and human CD34+ cord blood hematopoietic stem cells using a clinically applicable lentiviral vector. Haematologica. 2021 doi: 10.3324/haematol.2020.269142. PubMed DOI PMC
Barczyk K., Ehrchen J., Tenbrock K., Ahlmann M., Kneidl J., Viemann D., Roth J. Glucocorticoids promote survival of anti-inflammatory macrophages via stimulation of adenosine receptor A3. Blood. 2010;116:446–455. doi: 10.1182/blood-2009-10-247106. PubMed DOI
Bauer A., Tronche F., Wessely O., Kellendonk C., Reichardt H.M., Steinlein P., Schütz G., Beug H. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 1999;13:2996–3002. doi: 10.1101/gad.13.22.2996. PubMed DOI PMC
Narla A., Vlachos A., Nathan D.G. Diamond Blackfan anemia treatment: Past, present, and future. Semin. Hematol. 2011;48:117–123. doi: 10.1053/j.seminhematol.2011.01.004. PubMed DOI PMC
Sakamoto K.M., Narla A. Perspective on Diamond-Blackfan anemia: Lessons from a rare congenital bone marrow failure syndrome. Leukemia. 2018;32:249–251. doi: 10.1038/leu.2017.314. PubMed DOI PMC
Ramamoorthy S., Cidlowski J.A. Corticosteroids: Mechanisms of Action in Health and Disease. Rheum. Dis. Clin. N. Am. 2016;42:15–31. doi: 10.1016/j.rdc.2015.08.002. PubMed DOI PMC
Lossignol D. A little help from steroids in oncology. J. Transl. Intern. Med. 2016;4:52–54. doi: 10.1515/jtim-2016-0011. PubMed DOI PMC
Schäcke H., Döcke W.D., Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 2002;96:23–43. doi: 10.1016/S0163-7258(02)00297-8. PubMed DOI
Aljebab F., Choonara I., Conroy S. Systematic Review of the Toxicity of Long-Course Oral Corticosteroids in Children. PLoS ONE. 2017;12:e0170259. doi: 10.1371/journal.pone.0170259. PubMed DOI PMC
Grad I., Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol. Cell. Endocrinol. 2007;275:2–12. doi: 10.1016/j.mce.2007.05.018. PubMed DOI
Lamberts S.W., Huizenga A.T., de Lange P., de Jong F.H., Koper J.W. Clinical aspects of glucocorticoid sensitivity. Steroids. 1996;61:157–160. doi: 10.1016/0039-128X(96)00005-0. PubMed DOI
John S., Sabo P.J., Thurman R.E., Sung M.H., Biddie S.C., Johnson T.A., Hager G.L., Stamatoyannopoulos J.A. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 2011;43:264–268. doi: 10.1038/ng.759. PubMed DOI PMC
Samarasinghe R.A., Witchell S.F., DeFranco D.B. Cooperativity and complementarity: Synergies in non-classical and classical glucocorticoid signaling. Cell Cycle. 2012;11:2819–2827. doi: 10.4161/cc.21018. PubMed DOI PMC
Chang T.J., Scher B.M., Waxman S., Scher W. Inhibition of mouse GATA-1 function by the glucocorticoid receptor: Possible mechanism of steroid inhibition of erythroleukemia cell differentiation. Mol. Endocrinol. 1993;7:528–542. doi: 10.1210/mend.7.4.8502237. PubMed DOI
Lu N.Z., Cidlowski J.A. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann. N. Y. Acad. Sci. 2004;1024:102–123. doi: 10.1196/annals.1321.008. PubMed DOI
Koper J.W., van Rossum E.F., van den Akker E.L. Glucocorticoid receptor polymorphisms and haplotypes and their expression in health and disease. Steroids. 2014;92:62–73. doi: 10.1016/j.steroids.2014.07.015. PubMed DOI
Jewell C.M., Cidlowski J.A. Molecular evidence for a link between the N363S glucocorticoid receptor polymorphism and altered gene expression. J. Clin. Endocrinol. Metab. 2007;92:3268–3277. doi: 10.1210/jc.2007-0642. PubMed DOI PMC
van Rossum E.F., Lamberts S.W. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Prog. Horm. Res. 2004;59:333–357. doi: 10.1210/rp.59.1.333. PubMed DOI
Lonetti A., Indio V., Dianzani I., Ramenghi U., Da Costa L., Pospíšilová D., Migliaccio A.R. The Glucocorticoid Receptor Polymorphism Landscape in Patients With Diamond Blackfan Anemia Reveals an Association Between Two Clinically Relevant Single Nucleotide Polymorphisms and Time to Diagnosis. Front. Physiol. 2021;12:745032. doi: 10.3389/fphys.2021.745032. PubMed DOI PMC
Horos R., Ijspeert H., Pospisilova D., Sendtner R., Andrieu-Soler C., Taskesen E., Nieradka A., Cmejla R., Sendtner M., Touw I.P., et al. Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood. 2012;119:262–272. doi: 10.1182/blood-2011-06-358200. PubMed DOI
Boultwood J., Pellagatti A. Reduced translation of GATA1 in Diamond-Blackfan anemia. Nat. Med. 2014;20:703–704. doi: 10.1038/nm.3630. PubMed DOI
Gutiérrez L., Caballero N., Fernández-Calleja L., Karkoulia E., Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life. 2020;72:89–105. doi: 10.1002/iub.2192. PubMed DOI
Akiyama M., Yanagisawa T., Yuza Y., Yokoi K., Ariga M., Fujisawa K., Hoshi Y., Eto Y. Successful treatment of Diamond-Blackfan anemia with metoclopramide. Am. J. Hematol. 2005;78:295–298. doi: 10.1002/ajh.20278. PubMed DOI
Ribeil J.A., Zermati Y., Vandekerckhove J., Cathelin S., Kersual J., Dussiot M., Coulon S., Moura I.C., Zeuner A., Kirkegaard-Sørensen T., et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007;445:102–105. doi: 10.1038/nature05378. PubMed DOI
Sankaran V.G., Ghazvinian R., Do R., Thiru P., Vergilio J.A., Beggs A.H., Sieff C.A., Orkin S.H., Nathan D.G., Lander E.S., et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J. Clin. Investig. 2012;122:2439–2443. doi: 10.1172/JCI63597. PubMed DOI PMC
Zhou X., Medina S., Bolt A.M., Zhang H., Wan G., Xu H., Lauer F.T., Wang S.C., Burchiel S.W., Liu K.J. Inhibition of red blood cell development by arsenic-induced disruption of GATA-1. Sci. Rep. 2020;10:19055. doi: 10.1038/s41598-020-76118-x. PubMed DOI PMC
Iskander D., Wang G. Single-cell profiling of human bone marrow progenitors reveals mechanisms of failing erythropoiesis in Diamond-Blackfan anemia. Sci. Transl. Med. 2021;13:eabf0113. doi: 10.1126/scitranslmed.abf0113. PubMed DOI
Ludwig L.S., Gazda H.T., Eng J.C., Eichhorn S.W., Thiru P., Ghazvinian R., George T.I., Gotlib J.R., Beggs A.H., Sieff C.A., et al. Altered translation of GATA1 in Diamond-Blackfan anemia. Nat. Med. 2014;20:748–753. doi: 10.1038/nm.3557. PubMed DOI PMC
Long W., Wei L., Barrett E.J. Dexamethasone inhibits the stimulation of muscle protein synthesis and PHAS-I and p70 S6-kinase phosphorylation. Am. J. Physiol. Endocrinol. Metab. 2001;280:E570–E575. doi: 10.1152/ajpendo.2001.280.4.E570. PubMed DOI
Yu J., Roh S., Lee J.S., Yang B.H., Choi M.R., Chai Y.G., Kim S.H. The Effects of Venlafaxine and Dexamethasone on the Expression of HSP70 in Rat C6 Glioma Cells. Psychiatry Investig. 2010;7:43–48. doi: 10.4306/pi.2010.7.1.43. PubMed DOI PMC
Paulson R.F., Hariharan S., Little J.A. Stress erythropoiesis: Definitions and models for its study. Exp. Hematol. 2020;89:43–54.e42. doi: 10.1016/j.exphem.2020.07.011. PubMed DOI PMC
Freedman M.H., Amato D., Saunders E.F. Haem synthesis in the Diamond-Blackfan syndrome. Br. J. Haematol. 1975;31:515–520. doi: 10.1111/j.1365-2141.1975.tb00886.x. PubMed DOI
Malgor L.A., Torales P.R., Klainer T.E., Barrios L., Blanc C.C. Effects of dexamethasone on bone marrow erythropoiesis. Hormones. 1974;5:269–277. doi: 10.1159/000178640. PubMed DOI
Zhao W., Kitidis C., Fleming M.D., Lodish H.F., Ghaffari S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood. 2006;107:907–915. doi: 10.1182/blood-2005-06-2516. PubMed DOI PMC
Sjögren S.E., Flygare J. Progress towards mechanism-based treatment for Diamond-Blackfan anemia. Sci. World J. 2012;2012:184362. doi: 10.1100/2012/184362. PubMed DOI PMC
Hattangadi S.M., Wong P., Zhang L., Flygare J., Lodish H.F. From stem cell to red cell: Regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118:6258–6268. doi: 10.1182/blood-2011-07-356006. PubMed DOI PMC
Flygare J., Rayon Estrada V., Shin C., Gupta S., Lodish H.F. HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood. 2011;117:3435–3444. doi: 10.1182/blood-2010-07-295550. PubMed DOI PMC
Russo A., Russo G. Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. Int. J. Mol. Sci. 2017;18:140. doi: 10.3390/ijms18010140. PubMed DOI PMC
Nicolas E., Parisot P., Pinto-Monteiro C., de Walque R., De Vleeschouwer C., Lafontaine D.L. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat. Commun. 2016;7:11390. doi: 10.1038/ncomms11390. PubMed DOI PMC
Le Goff S., Boussaid I., Floquet C., Raimbault A., Hatin I., Andrieu-Soler C., Salma M., Leduc M., Gautier E.F., Guyot B., et al. p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood. 2021;137:89–102. doi: 10.1182/blood.2019003439. PubMed DOI
Danilova N., Bibikova E., Covey T.M., Nathanson D., Dimitrova E., Konto Y., Lindgren A., Glader B., Radu C.G., Sakamoto K.M., et al. The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia. Dis. Model. Mech. 2014;7:895–905. doi: 10.1242/dmm.015495. PubMed DOI PMC
Li H., Qian W., Weng X., Wu Z., Li H., Zhuang Q., Feng B., Bian Y. Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS ONE. 2012;7:e37030. doi: 10.1371/journal.pone.0037030. PubMed DOI PMC
Sengupta S., Vonesch J.L., Waltzinger C., Zheng H., Wasylyk B. Negative cross-talk between p53 and the glucocorticoid receptor and its role in neuroblastoma cells. EMBO J. 2000;19:6051–6064. doi: 10.1093/emboj/19.22.6051. PubMed DOI PMC
Kapralova K., Jahoda O., Koralkova P., Gursky J., Lanikova L. Oxidative DNA Damage, Inflammatory Signature, and Altered Erythrocytes Properties in Diamond-Blackfan Anemia. Int. J. Mol. Sci. 2020;21:9652. doi: 10.3390/ijms21249652. PubMed DOI PMC
Rio S., Gastou M., Karboul N., Derman R., Suriyun T., Manceau H., Leblanc T., El Benna J., Schmitt C., Azouzi S., et al. Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1. Blood. 2019;133:1358–1370. doi: 10.1182/blood-2018-09-875674. PubMed DOI PMC
Sanner B.M., Meder U., Zidek W., Tepel M. Effects of glucocorticoids on generation of reactive oxygen species in platelets. Steroids. 2002;67:715–719. doi: 10.1016/S0039-128X(02)00024-7. PubMed DOI
Gerö D., Szabo C. Glucocorticoids Suppress Mitochondrial Oxidant Production via Upregulation of Uncoupling Protein 2 in Hyperglycemic Endothelial Cells. PLoS ONE. 2016;11:e0154813. doi: 10.1371/journal.pone.0154813. PubMed DOI PMC
Dandona P., Mohanty P., Hamouda W., Aljada A., Kumbkarni Y., Garg R. Effect of dexamethasone on reactive oxygen species generation by leukocytes and plasma interleukin-10 concentrations: A pharmacodynamic study. Clin. Pharmacol. Ther. 1999;66:58–65. doi: 10.1016/S0009-9236(99)70054-8. PubMed DOI
Chen L., Hu S.L., Xie J., Yan D.Y., Weng S.J., Tang J.H., Wang B.Z., Xie Z.J., Wu Z.Y., Yang L. Proanthocyanidins-Mediated Nrf2 Activation Ameliorates Glucocorticoid-Induced Oxidative Stress and Mitochondrial Dysfunction in Osteoblasts. Oxidative Med. Cell. Longev. 2020;2020:9102012. doi: 10.1155/2020/9102012. PubMed DOI PMC
Sjögren S.E., Siva K., Soneji S., George A.J., Winkler M., Jaako P., Wlodarski M., Karlsson S., Hannan R.D., Flygare J. Glucocorticoids improve erythroid progenitor maintenance and dampen Trp53 response in a mouse model of Diamond-Blackfan anaemia. Br. J. Haematol. 2015;171:517–529. doi: 10.1111/bjh.13632. PubMed DOI PMC
Naithani R., Chandra J., Narayan S., Singh V., Dutta A.K. Diamond-Blackfan anemia: Clinical features and treatment results in 4 cases. Hematology. 2006;11:193–195. doi: 10.1080/10245330600774777. PubMed DOI
Jayapal S.R., Lee K.L., Ji P., Kaldis P., Lim B., Lodish H.F. Down-regulation of Myc is essential for terminal erythroid maturation. J. Biol. Chem. 2010;285:40252–40265. doi: 10.1074/jbc.M110.181073. PubMed DOI PMC
Sloan K.E., Bohnsack M.T., Watkins N.J. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 2013;5:237–247. doi: 10.1016/j.celrep.2013.08.049. PubMed DOI PMC
Liao J.M., Zhou X., Gatignol A., Lu H. Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex. Oncogene. 2014;33:4916–4923. doi: 10.1038/onc.2013.430. PubMed DOI PMC
Quarello P., Garelli E., Carando A., Brusco A., Calabrese R., Dufour C., Longoni D., Misuraca A., Vinti L., Aspesi A., et al. Diamond-Blackfan anemia: Genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations. Haematologica. 2010;95:206–213. doi: 10.3324/haematol.2009.011783. PubMed DOI PMC
Oršolić I., Bursać S., Jurada D., Drmić Hofman I., Dembić Z. Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint. Oncogene. 2020;39:3443–3457. doi: 10.1038/s41388-020-1231-6. PubMed DOI
Ajore R., Raiser D., McConkey M., Jöud M., Boidol B., Mar B., Saksena G., Weinstock D.M., Armstrong S., Ellis S.R., et al. Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations. EMBO Mol. Med. 2017;9:498–507. doi: 10.15252/emmm.201606660. PubMed DOI PMC
Zhou F., Medh R.D., Thompson E.B. Glucocorticoid mediated transcriptional repression of c-myc in apoptotic human leukemic CEM cells. J. Steroid Biochem. Mol. Biol. 2000;73:195–202. doi: 10.1016/S0960-0760(00)00080-7. PubMed DOI PMC
Ausserlechner M.J., Obexer P., Böck G., Geley S., Kofler R. Cyclin D3 and c-MYC control glucocorticoid-induced cell cycle arrest but not apoptosis in lymphoblastic leukemia cells. Cell Death Differ. 2004;11:165–174. doi: 10.1038/sj.cdd.4401328. PubMed DOI
Zhang J., Wu K., Xiao X., Liao J., Hu Q., Chen H., Liu J., An X. Autophagy as a regulatory component of erythropoiesis. Int. J. Mol. Sci. 2015;16:4083–4094. doi: 10.3390/ijms16024083. PubMed DOI PMC
Grosso R., Fader C.M., Colombo M.I. Autophagy: A necessary event during erythropoiesis. Blood Rev. 2017;31:300–305. doi: 10.1016/j.blre.2017.04.001. PubMed DOI
Kang Y.A., Sanalkumar R., O’Geen H., Linnemann A.K., Chang C.J., Bouhassira E.E., Farnham P.J., Keles S., Bresnick E.H. Autophagy driven by a master regulator of hematopoiesis. Mol. Cell. Biol. 2012;32:226–239. doi: 10.1128/MCB.06166-11. PubMed DOI PMC
Dunlop E.A., Tee A.R. mTOR and autophagy: A dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol. 2014;36:121–129. doi: 10.1016/j.semcdb.2014.08.006. PubMed DOI
Knight Z.A., Schmidt S.F., Birsoy K., Tan K., Friedman J.M. A critical role for mTORC1 in erythropoiesis and anemia. eLife. 2014;3:e01913. doi: 10.7554/eLife.01913. PubMed DOI PMC
Yang Z., Keel S.B., Shimamura A., Liu L., Gerds A.T., Li H.Y., Wood B.L., Scott B.L., Abkowitz J.L. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci. Transl. Med. 2016;8:338ra367. doi: 10.1126/scitranslmed.aaf3006. PubMed DOI PMC
Liu Q., Luo L., Ren C., Zou M., Yang S., Cai B., Wu L., Wang Y., Fu S., Hua X., et al. The opposing roles of the mTOR signaling pathway in different phases of human umbilical cord blood-derived CD34(+) cell erythropoiesis. Stem Cells. 2020;38:1492–1505. doi: 10.1002/stem.3268. PubMed DOI PMC
Chauvin C., Koka V., Nouschi A., Mieulet V., Hoareau-Aveilla C., Dreazen A., Cagnard N., Carpentier W., Kiss T., Meyuhas O., et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene. 2014;33:474–483. doi: 10.1038/onc.2012.606. PubMed DOI
Pospisilova D., Cmejlova J., Hak J., Adam T., Cmejla R. Successful treatment of a Diamond-Blackfan anemia patient with amino acid leucine. Haematologica. 2007;92:e66–e67. doi: 10.3324/haematol.11498. PubMed DOI
Payne E.M., Virgilio M., Narla A., Sun H., Levine M., Paw B.H., Berliner N., Look A.T., Ebert B.L., Khanna-Gupta A. L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood. 2012;120:2214–2224. doi: 10.1182/blood-2011-10-382986. PubMed DOI PMC
Doulatov S., Vo L.T., Macari E.R., Wahlster L., Kinney M.A., Taylor A.M., Barragan J., Gupta M., McGrath K., Lee H.Y., et al. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci. Transl. Med. 2017;9 doi: 10.1126/scitranslmed.aah5645. PubMed DOI PMC
Brumwell A., Fell L., Obress L., Uniacke J. Hypoxia influences polysome distribution of human ribosomal protein S12 and alternative splicing of ribosomal protein mRNAs. Rna. 2020;26:361–371. doi: 10.1261/rna.070318.119. PubMed DOI PMC
Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: Autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem. Soc. Trans. 2013;41:1103–1130. doi: 10.1042/BST20130134. PubMed DOI
Malik N., Dunn K.M., Cassels J., Hay J., Estell C., Sansom O.J., Michie A.M. mTORC1 activity is essential for erythropoiesis and B cell lineage commitment. Sci. Rep. 2019;9:16917. doi: 10.1038/s41598-019-53141-1. PubMed DOI PMC
Shimizu N., Yoshikawa N., Ito N., Maruyama T., Suzuki Y., Takeda S., Nakae J., Tagata Y., Nishitani S., Takehana K., et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 2011;13:170–182. doi: 10.1016/j.cmet.2011.01.001. PubMed DOI
Fu L., Wu W., Sun X., Zhang P. Glucocorticoids Enhanced Osteoclast Autophagy Through the PI3K/Akt/mTOR Signaling Pathway. Calcif. Tissue Int. 2020;107:60–71. doi: 10.1007/s00223-020-00687-2. PubMed DOI
Polman J.A., Hunter R.G., Speksnijder N., van den Oever J.M., Korobko O.B., McEwen B.S., de Kloet E.R., Datson N.A. Glucocorticoids modulate the mTOR pathway in the hippocampus: Differential effects depending on stress history. Endocrinology. 2012;153:4317–4327. doi: 10.1210/en.2012-1255. PubMed DOI
Pan J.M., Wu L.G., Cai J.W., Wu L.T., Liang M. Dexamethasone suppresses osteogenesis of osteoblast via the PI3K/Akt signaling pathway in vitro and in vivo. J. Recept. Signal Transduct. 2019;39:80–86. doi: 10.1080/10799893.2019.1625061. PubMed DOI
Kopriva F., Dzubak P., Potesil J., Hajduch M. The anti-inflammatory effects of inhaled corticosteroids versus anti-leukotrienes on the lymphocyte P-glycoprotein (PGP) expression in asthmatic children. J. Asthma. 2009;46:366–370. doi: 10.1080/02770900902777767. PubMed DOI
Spenerova M., Dzubak P., Srovnal J., Radova L., Burianova R., Konecny P., Salkova S., Novak Z., Pospisilova D., Stary J., et al. Combination of prednisolone and low dosed dexamethasone exhibits greater in vitro antileukemic activity than equiactive dose of prednisolone and overcomes prednisolone drug resistance in acute childhood lymphoblastic leukemia. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2014;158:422–427. doi: 10.5507/bp.2012.059. PubMed DOI
Ashley R.J., Yan H., Wang N., Hale J., Dulmovits B.M., Papoin J., Olive M.E., Udeshi N.D., Carr S.A., Vlachos A., et al. Steroid resistance in Diamond Blackfan anemia associates with p57Kip2 dysregulation in erythroid progenitors. J. Clin. Investig. 2020;130:2097–2110. doi: 10.1172/JCI132284. PubMed DOI PMC
Adcock I.M., Barnes P.J. Molecular mechanisms of corticosteroid resistance. Chest. 2008;134:394–401. doi: 10.1378/chest.08-0440. PubMed DOI
Samuelsson M.K., Pazirandeh A., Davani B., Okret S. p57Kip2, a glucocorticoid-induced inhibitor of cell cycle progression in HeLa cells. Mol. Endocrinol. 1999;13:1811–1822. doi: 10.1210/mend.13.11.0379. PubMed DOI
Sanz G., Singh M., Peuget S., Selivanova G. Inhibition of p53 inhibitors: Progress, challenges and perspectives. J. Mol. Cell Biol. 2019;11:586–599. doi: 10.1093/jmcb/mjz075. PubMed DOI PMC
Madden S.K., de Araujo A.D. Taking the Myc out of cancer: Toward therapeutic strategies to directly inhibit c-Myc. Mol. Cancer. 2021;20:3. doi: 10.1186/s12943-020-01291-6. PubMed DOI PMC
Towards a Cure for Diamond-Blackfan Anemia: Views on Gene Therapy