Effect of Glucocorticosteroids in Diamond-Blackfan Anaemia: Maybe Not as Elusive as It Seems

. 2022 Feb 08 ; 23 (3) : . [epub] 20220208

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35163808

Grantová podpora
LM2018133 Czech Ministry of Education, Youth and Sports
ACGT-CZ.02.1.01/0.0/0.0/16_026/0008448 Czech Ministry of Education, Youth and Sports
8F20005 Czech Ministry of Education, Youth and Sports
PerMed TACR TN 01000013 Technological Agency of the Czech Republic
IGA UP LF_2021_019, IGA UP LF_ 2021_038, and IGA_LF_2021_004 Palacky University Olomouc

Diamond-Blackfan anaemia (DBA) is a red blood cell aplasia that in the majority of cases is associated with ribosomal protein (RP) aberrations. However, the mechanism by which this disorder leads to such a specific phenotype remains unclear. Even more elusive is the reason why non-specific agents such as glucocorticosteroids (GCs), also known as glucocorticoids, are an effective therapy for DBA. In this review, we (1) explore why GCs are successful in DBA treatment, (2) discuss the effect of GCs on erythropoiesis, and (3) summarise the GC impact on crucial pathways deregulated in DBA. Furthermore, we show that GCs do not regulate DBA erythropoiesis via a single mechanism but more likely via several interdependent pathways.

Zobrazit více v PubMed

Bleiber R., Eggert W., Reichmann G., Muhlack D., Andres J. An early childhood erythrocyte phospholipid distribution as further indication of persistence of neonatal erythrocyte characteristics in Diamond-Blackfan anemia. Folia Haematol. 1983;110:71–80. PubMed

Vlachos A., Muir E. How I treat Diamond-Blackfan anemia. Blood. 2010;116:3715–3723. doi: 10.1182/blood-2010-02-251090. PubMed DOI PMC

Vlachos A., Ball S., Dahl N., Alter B.P., Sheth S., Ramenghi U., Meerpohl J., Karlsson S., Liu J.M., Leblanc T., et al. Diagnosing and treating Diamond Blackfan anaemia: Results of an international clinical consensus conference. Br. J. Haematol. 2008;142:859–876. doi: 10.1111/j.1365-2141.2008.07269.x. PubMed DOI PMC

Draptchinskaia N., Gustavsson P., Andersson B., Pettersson M., Willig T.N., Dianzani I., Ball S., Tchernia G., Klar J., Matsson H., et al. The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat. Genet. 1999;21:169–175. doi: 10.1038/5951. PubMed DOI

Pospisilova D., Cmejlova J., Ludikova B., Stary J., Cerna Z., Hak J., Timr P., Petrtylova K., Blatny J., Vokurka S., et al. The Czech National Diamond-Blackfan Anemia Registry: Clinical data and ribosomal protein mutations update. Blood Cells Mol. Dis. 2012;48:209–218. doi: 10.1016/j.bcmd.2012.02.002. PubMed DOI

Danilova N., Gazda H.T. Ribosomopathies: How a common root can cause a tree of pathologies. Dis. Model. Mech. 2015;8:1013–1026. doi: 10.1242/dmm.020529. PubMed DOI PMC

Klar J., Khalfallah A., Arzoo P.S., Gazda H.T., Dahl N. Recurrent GATA1 mutations in Diamond-Blackfan anaemia. Br. J. Haematol. 2014;166:949–951. doi: 10.1111/bjh.12919. PubMed DOI

Ulirsch J.C., Verboon J.M., Kazerounian S., Guo M.H., Yuan D., Ludwig L.S., Handsaker R.E., Abdulhay N.J., Fiorini C., Genovese G., et al. The Genetic Landscape of Diamond-Blackfan Anemia. Am. J. Hum. Genet. 2018;103:930–947. doi: 10.1016/j.ajhg.2018.10.027. PubMed DOI PMC

Gripp K.W., Curry C., Olney A.H., Sandoval C., Fisher J., Chong J.X., Pilchman L., Sahraoui R., Stabley D.L., Sol-Church K. Diamond-Blackfan anemia with mandibulofacial dystostosis is heterogeneous, including the novel DBA genes TSR2 and RPS28. Am. J. Med. Genet. Part A. 2014;164:2240–2249. doi: 10.1002/ajmg.a.36633. PubMed DOI PMC

Cmejlova J., Dolezalova L., Pospisilova D., Petrtylova K., Petrak J., Cmejla R. Translational efficiency in patients with Diamond-Blackfan anemia. Haematologica. 2006;91:1456–1464. PubMed

Gazda H.T., Kho A.T., Sanoudou D., Zaucha J.M., Kohane I.S., Sieff C.A., Beggs A.H. Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia. Stem Cells. 2006;24:2034–2044. doi: 10.1634/stemcells.2005-0554. PubMed DOI PMC

Aspesi A., Monteleone V., Betti M., Actis C., Morleo G., Sculco M., Guarrera S. Author Correction: Lymphoblastoid cell lines from Diamond Blackfan anaemia patients exhibit a full ribosomal stress phenotype that is rescued by gene therapy. Sci. Rep. 2018;8:17227. doi: 10.1038/s41598-018-35522-0. PubMed DOI PMC

Heijnen H.F., van Wijk R., Pereboom T.C., Goos Y.J., Seinen C.W., van Oirschot B.A., van Dooren R., Gastou M., Giles R.H., van Solinge W., et al. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway. PLoS Genet. 2014;10:e1004371. doi: 10.1371/journal.pgen.1004371. PubMed DOI PMC

Morgado-Palacin L., Varetti G., Llanos S., Gómez-López G., Martinez D., Serrano M. Partial Loss of Rpl11 in Adult Mice Recapitulates Diamond-Blackfan Anemia and Promotes Lymphomagenesis. Cell Rep. 2015;13:712–722. doi: 10.1016/j.celrep.2015.09.038. PubMed DOI

Bartels M., Bierings M. How I manage children with Diamond-Blackfan anaemia. Br. J. Haematol. 2019;184:123–133. doi: 10.1111/bjh.15701. PubMed DOI PMC

Harrison C. First gene therapy for β-thalassemia approved. Nat. Biotechnol. 2019;37:1102–1103. doi: 10.1038/d41587-019-00026-3. PubMed DOI

Liu Y., Dahl M., Debnath S., Rothe M., Smith E.M., Grahn T.H.M., Warsi S., Chen J., Flygare J., Schambach A., et al. Successful gene therapy of Diamond-Blackfan anemia in a mouse model and human CD34+ cord blood hematopoietic stem cells using a clinically applicable lentiviral vector. Haematologica. 2021 doi: 10.3324/haematol.2020.269142. PubMed DOI PMC

Barczyk K., Ehrchen J., Tenbrock K., Ahlmann M., Kneidl J., Viemann D., Roth J. Glucocorticoids promote survival of anti-inflammatory macrophages via stimulation of adenosine receptor A3. Blood. 2010;116:446–455. doi: 10.1182/blood-2009-10-247106. PubMed DOI

Bauer A., Tronche F., Wessely O., Kellendonk C., Reichardt H.M., Steinlein P., Schütz G., Beug H. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 1999;13:2996–3002. doi: 10.1101/gad.13.22.2996. PubMed DOI PMC

Narla A., Vlachos A., Nathan D.G. Diamond Blackfan anemia treatment: Past, present, and future. Semin. Hematol. 2011;48:117–123. doi: 10.1053/j.seminhematol.2011.01.004. PubMed DOI PMC

Sakamoto K.M., Narla A. Perspective on Diamond-Blackfan anemia: Lessons from a rare congenital bone marrow failure syndrome. Leukemia. 2018;32:249–251. doi: 10.1038/leu.2017.314. PubMed DOI PMC

Ramamoorthy S., Cidlowski J.A. Corticosteroids: Mechanisms of Action in Health and Disease. Rheum. Dis. Clin. N. Am. 2016;42:15–31. doi: 10.1016/j.rdc.2015.08.002. PubMed DOI PMC

Lossignol D. A little help from steroids in oncology. J. Transl. Intern. Med. 2016;4:52–54. doi: 10.1515/jtim-2016-0011. PubMed DOI PMC

Schäcke H., Döcke W.D., Asadullah K. Mechanisms involved in the side effects of glucocorticoids. Pharmacol. Ther. 2002;96:23–43. doi: 10.1016/S0163-7258(02)00297-8. PubMed DOI

Aljebab F., Choonara I., Conroy S. Systematic Review of the Toxicity of Long-Course Oral Corticosteroids in Children. PLoS ONE. 2017;12:e0170259. doi: 10.1371/journal.pone.0170259. PubMed DOI PMC

Grad I., Picard D. The glucocorticoid responses are shaped by molecular chaperones. Mol. Cell. Endocrinol. 2007;275:2–12. doi: 10.1016/j.mce.2007.05.018. PubMed DOI

Lamberts S.W., Huizenga A.T., de Lange P., de Jong F.H., Koper J.W. Clinical aspects of glucocorticoid sensitivity. Steroids. 1996;61:157–160. doi: 10.1016/0039-128X(96)00005-0. PubMed DOI

John S., Sabo P.J., Thurman R.E., Sung M.H., Biddie S.C., Johnson T.A., Hager G.L., Stamatoyannopoulos J.A. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat. Genet. 2011;43:264–268. doi: 10.1038/ng.759. PubMed DOI PMC

Samarasinghe R.A., Witchell S.F., DeFranco D.B. Cooperativity and complementarity: Synergies in non-classical and classical glucocorticoid signaling. Cell Cycle. 2012;11:2819–2827. doi: 10.4161/cc.21018. PubMed DOI PMC

Chang T.J., Scher B.M., Waxman S., Scher W. Inhibition of mouse GATA-1 function by the glucocorticoid receptor: Possible mechanism of steroid inhibition of erythroleukemia cell differentiation. Mol. Endocrinol. 1993;7:528–542. doi: 10.1210/mend.7.4.8502237. PubMed DOI

Lu N.Z., Cidlowski J.A. The origin and functions of multiple human glucocorticoid receptor isoforms. Ann. N. Y. Acad. Sci. 2004;1024:102–123. doi: 10.1196/annals.1321.008. PubMed DOI

Koper J.W., van Rossum E.F., van den Akker E.L. Glucocorticoid receptor polymorphisms and haplotypes and their expression in health and disease. Steroids. 2014;92:62–73. doi: 10.1016/j.steroids.2014.07.015. PubMed DOI

Jewell C.M., Cidlowski J.A. Molecular evidence for a link between the N363S glucocorticoid receptor polymorphism and altered gene expression. J. Clin. Endocrinol. Metab. 2007;92:3268–3277. doi: 10.1210/jc.2007-0642. PubMed DOI PMC

van Rossum E.F., Lamberts S.W. Polymorphisms in the glucocorticoid receptor gene and their associations with metabolic parameters and body composition. Recent Prog. Horm. Res. 2004;59:333–357. doi: 10.1210/rp.59.1.333. PubMed DOI

Lonetti A., Indio V., Dianzani I., Ramenghi U., Da Costa L., Pospíšilová D., Migliaccio A.R. The Glucocorticoid Receptor Polymorphism Landscape in Patients With Diamond Blackfan Anemia Reveals an Association Between Two Clinically Relevant Single Nucleotide Polymorphisms and Time to Diagnosis. Front. Physiol. 2021;12:745032. doi: 10.3389/fphys.2021.745032. PubMed DOI PMC

Horos R., Ijspeert H., Pospisilova D., Sendtner R., Andrieu-Soler C., Taskesen E., Nieradka A., Cmejla R., Sendtner M., Touw I.P., et al. Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood. 2012;119:262–272. doi: 10.1182/blood-2011-06-358200. PubMed DOI

Boultwood J., Pellagatti A. Reduced translation of GATA1 in Diamond-Blackfan anemia. Nat. Med. 2014;20:703–704. doi: 10.1038/nm.3630. PubMed DOI

Gutiérrez L., Caballero N., Fernández-Calleja L., Karkoulia E., Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life. 2020;72:89–105. doi: 10.1002/iub.2192. PubMed DOI

Akiyama M., Yanagisawa T., Yuza Y., Yokoi K., Ariga M., Fujisawa K., Hoshi Y., Eto Y. Successful treatment of Diamond-Blackfan anemia with metoclopramide. Am. J. Hematol. 2005;78:295–298. doi: 10.1002/ajh.20278. PubMed DOI

Ribeil J.A., Zermati Y., Vandekerckhove J., Cathelin S., Kersual J., Dussiot M., Coulon S., Moura I.C., Zeuner A., Kirkegaard-Sørensen T., et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007;445:102–105. doi: 10.1038/nature05378. PubMed DOI

Sankaran V.G., Ghazvinian R., Do R., Thiru P., Vergilio J.A., Beggs A.H., Sieff C.A., Orkin S.H., Nathan D.G., Lander E.S., et al. Exome sequencing identifies GATA1 mutations resulting in Diamond-Blackfan anemia. J. Clin. Investig. 2012;122:2439–2443. doi: 10.1172/JCI63597. PubMed DOI PMC

Zhou X., Medina S., Bolt A.M., Zhang H., Wan G., Xu H., Lauer F.T., Wang S.C., Burchiel S.W., Liu K.J. Inhibition of red blood cell development by arsenic-induced disruption of GATA-1. Sci. Rep. 2020;10:19055. doi: 10.1038/s41598-020-76118-x. PubMed DOI PMC

Iskander D., Wang G. Single-cell profiling of human bone marrow progenitors reveals mechanisms of failing erythropoiesis in Diamond-Blackfan anemia. Sci. Transl. Med. 2021;13:eabf0113. doi: 10.1126/scitranslmed.abf0113. PubMed DOI

Ludwig L.S., Gazda H.T., Eng J.C., Eichhorn S.W., Thiru P., Ghazvinian R., George T.I., Gotlib J.R., Beggs A.H., Sieff C.A., et al. Altered translation of GATA1 in Diamond-Blackfan anemia. Nat. Med. 2014;20:748–753. doi: 10.1038/nm.3557. PubMed DOI PMC

Long W., Wei L., Barrett E.J. Dexamethasone inhibits the stimulation of muscle protein synthesis and PHAS-I and p70 S6-kinase phosphorylation. Am. J. Physiol. Endocrinol. Metab. 2001;280:E570–E575. doi: 10.1152/ajpendo.2001.280.4.E570. PubMed DOI

Yu J., Roh S., Lee J.S., Yang B.H., Choi M.R., Chai Y.G., Kim S.H. The Effects of Venlafaxine and Dexamethasone on the Expression of HSP70 in Rat C6 Glioma Cells. Psychiatry Investig. 2010;7:43–48. doi: 10.4306/pi.2010.7.1.43. PubMed DOI PMC

Paulson R.F., Hariharan S., Little J.A. Stress erythropoiesis: Definitions and models for its study. Exp. Hematol. 2020;89:43–54.e42. doi: 10.1016/j.exphem.2020.07.011. PubMed DOI PMC

Freedman M.H., Amato D., Saunders E.F. Haem synthesis in the Diamond-Blackfan syndrome. Br. J. Haematol. 1975;31:515–520. doi: 10.1111/j.1365-2141.1975.tb00886.x. PubMed DOI

Malgor L.A., Torales P.R., Klainer T.E., Barrios L., Blanc C.C. Effects of dexamethasone on bone marrow erythropoiesis. Hormones. 1974;5:269–277. doi: 10.1159/000178640. PubMed DOI

Zhao W., Kitidis C., Fleming M.D., Lodish H.F., Ghaffari S. Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood. 2006;107:907–915. doi: 10.1182/blood-2005-06-2516. PubMed DOI PMC

Sjögren S.E., Flygare J. Progress towards mechanism-based treatment for Diamond-Blackfan anemia. Sci. World J. 2012;2012:184362. doi: 10.1100/2012/184362. PubMed DOI PMC

Hattangadi S.M., Wong P., Zhang L., Flygare J., Lodish H.F. From stem cell to red cell: Regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011;118:6258–6268. doi: 10.1182/blood-2011-07-356006. PubMed DOI PMC

Flygare J., Rayon Estrada V., Shin C., Gupta S., Lodish H.F. HIF1alpha synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood. 2011;117:3435–3444. doi: 10.1182/blood-2010-07-295550. PubMed DOI PMC

Russo A., Russo G. Ribosomal Proteins Control or Bypass p53 during Nucleolar Stress. Int. J. Mol. Sci. 2017;18:140. doi: 10.3390/ijms18010140. PubMed DOI PMC

Nicolas E., Parisot P., Pinto-Monteiro C., de Walque R., De Vleeschouwer C., Lafontaine D.L. Involvement of human ribosomal proteins in nucleolar structure and p53-dependent nucleolar stress. Nat. Commun. 2016;7:11390. doi: 10.1038/ncomms11390. PubMed DOI PMC

Le Goff S., Boussaid I., Floquet C., Raimbault A., Hatin I., Andrieu-Soler C., Salma M., Leduc M., Gautier E.F., Guyot B., et al. p53 activation during ribosome biogenesis regulates normal erythroid differentiation. Blood. 2021;137:89–102. doi: 10.1182/blood.2019003439. PubMed DOI

Danilova N., Bibikova E., Covey T.M., Nathanson D., Dimitrova E., Konto Y., Lindgren A., Glader B., Radu C.G., Sakamoto K.M., et al. The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia. Dis. Model. Mech. 2014;7:895–905. doi: 10.1242/dmm.015495. PubMed DOI PMC

Li H., Qian W., Weng X., Wu Z., Li H., Zhuang Q., Feng B., Bian Y. Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS ONE. 2012;7:e37030. doi: 10.1371/journal.pone.0037030. PubMed DOI PMC

Sengupta S., Vonesch J.L., Waltzinger C., Zheng H., Wasylyk B. Negative cross-talk between p53 and the glucocorticoid receptor and its role in neuroblastoma cells. EMBO J. 2000;19:6051–6064. doi: 10.1093/emboj/19.22.6051. PubMed DOI PMC

Kapralova K., Jahoda O., Koralkova P., Gursky J., Lanikova L. Oxidative DNA Damage, Inflammatory Signature, and Altered Erythrocytes Properties in Diamond-Blackfan Anemia. Int. J. Mol. Sci. 2020;21:9652. doi: 10.3390/ijms21249652. PubMed DOI PMC

Rio S., Gastou M., Karboul N., Derman R., Suriyun T., Manceau H., Leblanc T., El Benna J., Schmitt C., Azouzi S., et al. Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1. Blood. 2019;133:1358–1370. doi: 10.1182/blood-2018-09-875674. PubMed DOI PMC

Sanner B.M., Meder U., Zidek W., Tepel M. Effects of glucocorticoids on generation of reactive oxygen species in platelets. Steroids. 2002;67:715–719. doi: 10.1016/S0039-128X(02)00024-7. PubMed DOI

Gerö D., Szabo C. Glucocorticoids Suppress Mitochondrial Oxidant Production via Upregulation of Uncoupling Protein 2 in Hyperglycemic Endothelial Cells. PLoS ONE. 2016;11:e0154813. doi: 10.1371/journal.pone.0154813. PubMed DOI PMC

Dandona P., Mohanty P., Hamouda W., Aljada A., Kumbkarni Y., Garg R. Effect of dexamethasone on reactive oxygen species generation by leukocytes and plasma interleukin-10 concentrations: A pharmacodynamic study. Clin. Pharmacol. Ther. 1999;66:58–65. doi: 10.1016/S0009-9236(99)70054-8. PubMed DOI

Chen L., Hu S.L., Xie J., Yan D.Y., Weng S.J., Tang J.H., Wang B.Z., Xie Z.J., Wu Z.Y., Yang L. Proanthocyanidins-Mediated Nrf2 Activation Ameliorates Glucocorticoid-Induced Oxidative Stress and Mitochondrial Dysfunction in Osteoblasts. Oxidative Med. Cell. Longev. 2020;2020:9102012. doi: 10.1155/2020/9102012. PubMed DOI PMC

Sjögren S.E., Siva K., Soneji S., George A.J., Winkler M., Jaako P., Wlodarski M., Karlsson S., Hannan R.D., Flygare J. Glucocorticoids improve erythroid progenitor maintenance and dampen Trp53 response in a mouse model of Diamond-Blackfan anaemia. Br. J. Haematol. 2015;171:517–529. doi: 10.1111/bjh.13632. PubMed DOI PMC

Naithani R., Chandra J., Narayan S., Singh V., Dutta A.K. Diamond-Blackfan anemia: Clinical features and treatment results in 4 cases. Hematology. 2006;11:193–195. doi: 10.1080/10245330600774777. PubMed DOI

Jayapal S.R., Lee K.L., Ji P., Kaldis P., Lim B., Lodish H.F. Down-regulation of Myc is essential for terminal erythroid maturation. J. Biol. Chem. 2010;285:40252–40265. doi: 10.1074/jbc.M110.181073. PubMed DOI PMC

Sloan K.E., Bohnsack M.T., Watkins N.J. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep. 2013;5:237–247. doi: 10.1016/j.celrep.2013.08.049. PubMed DOI PMC

Liao J.M., Zhou X., Gatignol A., Lu H. Ribosomal proteins L5 and L11 co-operatively inactivate c-Myc via RNA-induced silencing complex. Oncogene. 2014;33:4916–4923. doi: 10.1038/onc.2013.430. PubMed DOI PMC

Quarello P., Garelli E., Carando A., Brusco A., Calabrese R., Dufour C., Longoni D., Misuraca A., Vinti L., Aspesi A., et al. Diamond-Blackfan anemia: Genotype-phenotype correlations in Italian patients with RPL5 and RPL11 mutations. Haematologica. 2010;95:206–213. doi: 10.3324/haematol.2009.011783. PubMed DOI PMC

Oršolić I., Bursać S., Jurada D., Drmić Hofman I., Dembić Z. Cancer-associated mutations in the ribosomal protein L5 gene dysregulate the HDM2/p53-mediated ribosome biogenesis checkpoint. Oncogene. 2020;39:3443–3457. doi: 10.1038/s41388-020-1231-6. PubMed DOI

Ajore R., Raiser D., McConkey M., Jöud M., Boidol B., Mar B., Saksena G., Weinstock D.M., Armstrong S., Ellis S.R., et al. Deletion of ribosomal protein genes is a common vulnerability in human cancer, especially in concert with TP53 mutations. EMBO Mol. Med. 2017;9:498–507. doi: 10.15252/emmm.201606660. PubMed DOI PMC

Zhou F., Medh R.D., Thompson E.B. Glucocorticoid mediated transcriptional repression of c-myc in apoptotic human leukemic CEM cells. J. Steroid Biochem. Mol. Biol. 2000;73:195–202. doi: 10.1016/S0960-0760(00)00080-7. PubMed DOI PMC

Ausserlechner M.J., Obexer P., Böck G., Geley S., Kofler R. Cyclin D3 and c-MYC control glucocorticoid-induced cell cycle arrest but not apoptosis in lymphoblastic leukemia cells. Cell Death Differ. 2004;11:165–174. doi: 10.1038/sj.cdd.4401328. PubMed DOI

Zhang J., Wu K., Xiao X., Liao J., Hu Q., Chen H., Liu J., An X. Autophagy as a regulatory component of erythropoiesis. Int. J. Mol. Sci. 2015;16:4083–4094. doi: 10.3390/ijms16024083. PubMed DOI PMC

Grosso R., Fader C.M., Colombo M.I. Autophagy: A necessary event during erythropoiesis. Blood Rev. 2017;31:300–305. doi: 10.1016/j.blre.2017.04.001. PubMed DOI

Kang Y.A., Sanalkumar R., O’Geen H., Linnemann A.K., Chang C.J., Bouhassira E.E., Farnham P.J., Keles S., Bresnick E.H. Autophagy driven by a master regulator of hematopoiesis. Mol. Cell. Biol. 2012;32:226–239. doi: 10.1128/MCB.06166-11. PubMed DOI PMC

Dunlop E.A., Tee A.R. mTOR and autophagy: A dynamic relationship governed by nutrients and energy. Semin. Cell Dev. Biol. 2014;36:121–129. doi: 10.1016/j.semcdb.2014.08.006. PubMed DOI

Knight Z.A., Schmidt S.F., Birsoy K., Tan K., Friedman J.M. A critical role for mTORC1 in erythropoiesis and anemia. eLife. 2014;3:e01913. doi: 10.7554/eLife.01913. PubMed DOI PMC

Yang Z., Keel S.B., Shimamura A., Liu L., Gerds A.T., Li H.Y., Wood B.L., Scott B.L., Abkowitz J.L. Delayed globin synthesis leads to excess heme and the macrocytic anemia of Diamond Blackfan anemia and del(5q) myelodysplastic syndrome. Sci. Transl. Med. 2016;8:338ra367. doi: 10.1126/scitranslmed.aaf3006. PubMed DOI PMC

Liu Q., Luo L., Ren C., Zou M., Yang S., Cai B., Wu L., Wang Y., Fu S., Hua X., et al. The opposing roles of the mTOR signaling pathway in different phases of human umbilical cord blood-derived CD34(+) cell erythropoiesis. Stem Cells. 2020;38:1492–1505. doi: 10.1002/stem.3268. PubMed DOI PMC

Chauvin C., Koka V., Nouschi A., Mieulet V., Hoareau-Aveilla C., Dreazen A., Cagnard N., Carpentier W., Kiss T., Meyuhas O., et al. Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program. Oncogene. 2014;33:474–483. doi: 10.1038/onc.2012.606. PubMed DOI

Pospisilova D., Cmejlova J., Hak J., Adam T., Cmejla R. Successful treatment of a Diamond-Blackfan anemia patient with amino acid leucine. Haematologica. 2007;92:e66–e67. doi: 10.3324/haematol.11498. PubMed DOI

Payne E.M., Virgilio M., Narla A., Sun H., Levine M., Paw B.H., Berliner N., Look A.T., Ebert B.L., Khanna-Gupta A. L-Leucine improves the anemia and developmental defects associated with Diamond-Blackfan anemia and del(5q) MDS by activating the mTOR pathway. Blood. 2012;120:2214–2224. doi: 10.1182/blood-2011-10-382986. PubMed DOI PMC

Doulatov S., Vo L.T., Macari E.R., Wahlster L., Kinney M.A., Taylor A.M., Barragan J., Gupta M., McGrath K., Lee H.Y., et al. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors. Sci. Transl. Med. 2017;9 doi: 10.1126/scitranslmed.aah5645. PubMed DOI PMC

Brumwell A., Fell L., Obress L., Uniacke J. Hypoxia influences polysome distribution of human ribosomal protein S12 and alternative splicing of ribosomal protein mRNAs. Rna. 2020;26:361–371. doi: 10.1261/rna.070318.119. PubMed DOI PMC

Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: Autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem. Soc. Trans. 2013;41:1103–1130. doi: 10.1042/BST20130134. PubMed DOI

Malik N., Dunn K.M., Cassels J., Hay J., Estell C., Sansom O.J., Michie A.M. mTORC1 activity is essential for erythropoiesis and B cell lineage commitment. Sci. Rep. 2019;9:16917. doi: 10.1038/s41598-019-53141-1. PubMed DOI PMC

Shimizu N., Yoshikawa N., Ito N., Maruyama T., Suzuki Y., Takeda S., Nakae J., Tagata Y., Nishitani S., Takehana K., et al. Crosstalk between glucocorticoid receptor and nutritional sensor mTOR in skeletal muscle. Cell Metab. 2011;13:170–182. doi: 10.1016/j.cmet.2011.01.001. PubMed DOI

Fu L., Wu W., Sun X., Zhang P. Glucocorticoids Enhanced Osteoclast Autophagy Through the PI3K/Akt/mTOR Signaling Pathway. Calcif. Tissue Int. 2020;107:60–71. doi: 10.1007/s00223-020-00687-2. PubMed DOI

Polman J.A., Hunter R.G., Speksnijder N., van den Oever J.M., Korobko O.B., McEwen B.S., de Kloet E.R., Datson N.A. Glucocorticoids modulate the mTOR pathway in the hippocampus: Differential effects depending on stress history. Endocrinology. 2012;153:4317–4327. doi: 10.1210/en.2012-1255. PubMed DOI

Pan J.M., Wu L.G., Cai J.W., Wu L.T., Liang M. Dexamethasone suppresses osteogenesis of osteoblast via the PI3K/Akt signaling pathway in vitro and in vivo. J. Recept. Signal Transduct. 2019;39:80–86. doi: 10.1080/10799893.2019.1625061. PubMed DOI

Kopriva F., Dzubak P., Potesil J., Hajduch M. The anti-inflammatory effects of inhaled corticosteroids versus anti-leukotrienes on the lymphocyte P-glycoprotein (PGP) expression in asthmatic children. J. Asthma. 2009;46:366–370. doi: 10.1080/02770900902777767. PubMed DOI

Spenerova M., Dzubak P., Srovnal J., Radova L., Burianova R., Konecny P., Salkova S., Novak Z., Pospisilova D., Stary J., et al. Combination of prednisolone and low dosed dexamethasone exhibits greater in vitro antileukemic activity than equiactive dose of prednisolone and overcomes prednisolone drug resistance in acute childhood lymphoblastic leukemia. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2014;158:422–427. doi: 10.5507/bp.2012.059. PubMed DOI

Ashley R.J., Yan H., Wang N., Hale J., Dulmovits B.M., Papoin J., Olive M.E., Udeshi N.D., Carr S.A., Vlachos A., et al. Steroid resistance in Diamond Blackfan anemia associates with p57Kip2 dysregulation in erythroid progenitors. J. Clin. Investig. 2020;130:2097–2110. doi: 10.1172/JCI132284. PubMed DOI PMC

Adcock I.M., Barnes P.J. Molecular mechanisms of corticosteroid resistance. Chest. 2008;134:394–401. doi: 10.1378/chest.08-0440. PubMed DOI

Samuelsson M.K., Pazirandeh A., Davani B., Okret S. p57Kip2, a glucocorticoid-induced inhibitor of cell cycle progression in HeLa cells. Mol. Endocrinol. 1999;13:1811–1822. doi: 10.1210/mend.13.11.0379. PubMed DOI

Sanz G., Singh M., Peuget S., Selivanova G. Inhibition of p53 inhibitors: Progress, challenges and perspectives. J. Mol. Cell Biol. 2019;11:586–599. doi: 10.1093/jmcb/mjz075. PubMed DOI PMC

Madden S.K., de Araujo A.D. Taking the Myc out of cancer: Toward therapeutic strategies to directly inhibit c-Myc. Mol. Cancer. 2021;20:3. doi: 10.1186/s12943-020-01291-6. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace