Oxidative DNA Damage, Inflammatory Signature, and Altered Erythrocytes Properties in Diamond-Blackfan Anemia

. 2020 Dec 17 ; 21 (24) : . [epub] 20201217

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33348919

Grantová podpora
AZV 16-32105A Ministerstvo Zdravotnictví Ceské Republiky
8F20005 Ministerstvo Školství, Mládeže a Tělovýchovy
IGA_LF_2020_005 Univerzita Palackého v Olomouci

Molecular pathophysiology of Diamond-Blackfan anemia (DBA) involves disrupted erythroid-lineage proliferation, differentiation and apoptosis; with the activation of p53 considered as a key component. Recently, oxidative stress was proposed to play an important role in DBA pathophysiology as well. CRISPR/Cas9-created Rpl5- and Rps19-deficient murine erythroleukemia (MEL) cells and DBA patients' samples were used to evaluate proinflammatory cytokines, oxidative stress, DNA damage and DNA damage response. We demonstrated that the antioxidant defense capacity of Rp-mutant cells is insufficient to meet the greater reactive oxygen species (ROS) production which leads to oxidative DNA damage, cellular senescence and activation of DNA damage response signaling in the developing erythroblasts and altered characteristics of mature erythrocytes. We also showed that the disturbed balance between ROS formation and antioxidant defense is accompanied by the upregulation of proinflammatory cytokines. Finally, the alterations detected in the membrane of DBA erythrocytes may cause their enhanced recognition and destruction by reticuloendothelial macrophages, especially during infections. We propose that the extent of oxidative stress and the ability to activate antioxidant defense systems may contribute to high heterogeneity of clinical symptoms and response to therapy observed in DBA patients.

Zobrazit více v PubMed

Da Costa L., Narla A., Mohandas N. An update on the pathogenesis and diagnosis of Diamond-Blackfan anemia. F1000Research. 2018;7 doi: 10.12688/f1000research.15542.1. PubMed DOI PMC

Kampen K.R., Sulima S.O., Vereecke S., De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res. 2020;48:1013–1028. doi: 10.1093/nar/gkz637. PubMed DOI PMC

Rio S., Gastou M., Karboul N., Derman R., Suriyun T., Manceau H., Leblanc T., El Benna J., Schmitt C., Azouzi S., et al. Regulation of globin-heme balance in Diamond-Blackfan anemia by HSP70/GATA1. Blood. 2019;133:1358–1370. doi: 10.1182/blood-2018-09-875674. PubMed DOI PMC

Heijnen H.F., van Wijk R., Pereboom T.C., Goos Y.J., Seinen C.W., van Oirschot B.A., van Dooren R., Gastou M., Giles R.H., van Solinge W., et al. Ribosomal protein mutations induce autophagy through S6 kinase inhibition of the insulin pathway. PLoS Genet. 2014;10:e1004371. doi: 10.1371/journal.pgen.1004371. PubMed DOI PMC

Danilova N., Bibikova E., Covey T.M., Nathanson D., Dimitrova E., Konto Y., Lindgren A., Glader B., Radu C.G., Sakamoto K.M., et al. The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia. Dis. Model. Mech. 2014;7:895–905. doi: 10.1242/dmm.015495. PubMed DOI PMC

Lang E., Qadri S.M., Lang F. Killing me softly—Suicidal erythrocyte death. Int. J. Biochem. Cell Biol. 2012;44:1236–1243. doi: 10.1016/j.biocel.2012.04.019. PubMed DOI

Zidova Z., Kapralova K., Koralkova P., Mojzikova R., Dolezal D., Divoky V., Horvathova M. DMT1-mutant Erythrocytes Have Shortened Life Span, Accelerated Glycolysis and Increased Oxidative Stress. Cell Physiol. Biochem. 2014;34:2221–2231. doi: 10.1159/000369665. PubMed DOI

Lang F., Abed M., Lang E., Föller M. Oxidative Stress and Suicidal Erythrocyte Death. Antioxid. Redox Signal. 2014;21:138–153. doi: 10.1089/ars.2013.5747. PubMed DOI

Utsugisawa T., Uchiyama T., Toki T., Ogura H., Aoki T., Hamaguchi I., Ishiguro A., Ohara A., Kojima S., Ohga S., et al. Erythrocyte glutathione is a novel biomarker of Diamond-Blackfan anemia. Blood Cells Mol. Dis. 2016;59:31–36. doi: 10.1016/j.bcmd.2016.03.007. PubMed DOI

Volejnikova J., Vojta P., Urbankova H., Mojzíkova R., Horvathova M., Hochova I., Cermak J., Blatny J., Sukova M., Bubanska E., et al. Czech and Slovak Diamond-Blackfan Anemia (DBA) Registry Update: Clinical Data and Novel Causative Genetic Lesions. Blood Cells Mol. Dis. 2020;81:102380. doi: 10.1016/j.bcmd.2019.102380. PubMed DOI

Kempe D.S., Lang P.A., Duranton C., Akel A., Lang K.S., Huber S.M., Wieder T., Lang F. Enhanced programmed cell death of iron-deficient erythrocytes. FASEB J. 2006;20:368–370. doi: 10.1096/fj.05-4872fje. PubMed DOI

Antoniou M. Induction of Erythroid-Specific Expression in Murine Erythroleukemia (MEL) Cell Lines. Methods Mol. Biol. 1991;7:421–434. PubMed

Ohene-Abuakwa Y., Orfali K.A., Marius C., Ball S.E. Two-phase Culture in Diamond Blackfan Anemia: Localization of Erythroid Defect. Blood. 2005;105:838–846. doi: 10.1182/blood-2004-03-1016. PubMed DOI

Lipton J.M., Kudisch M., Gross R., Nathan D.G. Defective erythroid progenitor differentiation system in congenital hypoplastic (Diamond-Blackfan) anemia. Blood. 1986;67:962–968. doi: 10.1182/blood.V67.4.962.962. PubMed DOI

Pospisilova D., Holub D., Zidova Z., Sulovska L., Houda J., Mihal V., Hadacova I., Radova L., Dzubak P., Hajduch M., et al. Hepcidin levels in Diamond-Blackfan anemia reflect erythropoietic activity and transfusion dependency. Haematologica. 2014;99:e118–e121. doi: 10.3324/haematol.2014.104034. PubMed DOI PMC

Srinivas U.S., Tan B.W.Q., Vellayappan B.A., Jeyasekharan A.D. ROS and the DNA damage response in cancer. Redox Biol. 2019;25:101084. doi: 10.1016/j.redox.2018.101084. PubMed DOI PMC

Zhao B., Tan T.L., Mei Y., Yang J., Yu Y., Verma A., Liang Y., Gao J., Ji P. H2AX deficiency is associated with erythroid dysplasia and compromised haematopoietic stem cell function. Sci. Rep. 2016;6:19589. doi: 10.1038/srep19589. PubMed DOI PMC

Bartek J., Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell. 2003;3:421–429. doi: 10.1016/S1535-6108(03)00110-7. PubMed DOI

Bartek J., Lukas J. DNA damage checkpoints: From initiation to recovery or adaptation. Curr. Opin. Cell Biol. 2007;19:238–245. doi: 10.1016/j.ceb.2007.02.009. PubMed DOI

Zhang J., Tripathi D.N., Jing J., Alexander A., Kim J., Powell R.T., Dere R., Tait-Mulder J., Lee J.-H., Paull T.T., et al. ATM functions at the peroxisome to induce pexophagy in response to ROS. Nat. Cell Biol. 2015;17:1259–1269. doi: 10.1038/ncb3230. PubMed DOI PMC

Lu H., Shamanna R.A., Keijzers G., Anand R., Rasmussen L.J., Cejka P., Croteau D.L., Bohr V.A. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks. Cell Rep. 2016;16:161–173. doi: 10.1016/j.celrep.2016.05.079. PubMed DOI PMC

Shamanna R.A., Singh D.K., Lu H., Mirey G., Keijzers G., Salles B., Croteau D.L., Bohr V.A. RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex. Carcinogenesis. 2014;35:2415–2424. doi: 10.1093/carcin/bgu137. PubMed DOI PMC

Maynard S., Schurman S.H., Harboe C., de Souza-Pinto N.C., Bohr V.A. Base excision repair of oxidative DNA damage and association with cancer and aging. Carcinogenesis. 2009;30:2–10. doi: 10.1093/carcin/bgn250. PubMed DOI PMC

Chang H.H.Y., Pannunzio N.R., Adachi N., Lieber M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017;18:495–506. doi: 10.1038/nrm.2017.48. PubMed DOI PMC

ENCODE Project Consortium The ENCODE (ENCyclopedia of DNA Elements) Project. Science. 2004;306:636–640. doi: 10.1126/science.1105136. PubMed DOI

Kidane D., Chae W.J., Czochor J., Eckert K.A., Glazer P.M., Bothwell A.L.M., Sweasy J.B. Interplay between DNA repair and inflammation, and the link to cancer. Crit. Rev. Biochem. Mol. Biol. 2014;49:116–139. doi: 10.3109/10409238.2013.875514. PubMed DOI PMC

Bibikova E., Youn M.Y., Danilova N., Ono-Uruga Y., Konto-Ghiorghi Y., Ochoa R., Narla A., Glader B., Lin S., Sakamoto K.M. TNF-mediated inflammation represses GATA1 and activates p38 MAP kinase in RPS19-deficient hematopoietic progenitors. Blood. 2014;124:3791–3798. doi: 10.1182/blood-2014-06-584656. PubMed DOI PMC

Schieven G.L. The p38alpha kinase plays a central role in inflammation. Curr. Top. Med. Chem. 2009;9:1038–1048. doi: 10.2174/156802609789630974. PubMed DOI

Xu D., Matsumoto M.L., McKenzie B.S., Zarrin A.A. TPL2 kinase action and control of inflammation. Pharmacol. Res. 2018;129:188–193. doi: 10.1016/j.phrs.2017.11.031. PubMed DOI

Freund A., Orjalo A.V., Desprez P.Y., Campisi J. Inflammatory networks during cellular senescence: Causes and consequences. Trends Mol. Med. 2010;16:238–246. doi: 10.1016/j.molmed.2010.03.003. PubMed DOI PMC

Coppé J.P., Patil C.K., Rodier F., Sun Y., Muñoz D.P., Goldstein J., Nelson P.S., Desprez P.Y., Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008;6:2853–2868. doi: 10.1371/journal.pbio.0060301. PubMed DOI PMC

Corral L.G., Haslett P.A., Muller G.W., Chen R., Wong L.M., Ocampo C.J., Patterson R.T., Stirling D.I., Kaplan G. Differential Cytokine Modulation and T Cell Activation by Two Distinct Classes of Thalidomide Analogues That Are Potent Inhibitors of TNF-alpha. J. Immunol. 1999;163:380–386. PubMed

Escoubet-Lozach L., Lin I.L., Jensen-Pergakes K., Brady H.A., Gandhi A.K., Schafer P.H., Muller G.W., Worland P.J., Chan K.W.H., Verhelle D. Pomalidomide and Lenalidomide Induce p21 WAF-1 Expression in Both Lymphoma and Multiple Myeloma Through a LSD1-mediated Epigenetic Mechanism. Cancer Res. 2009;69:7347–7356. doi: 10.1158/0008-5472.CAN-08-4898. PubMed DOI

Horos R., Ijspeert H., Pospisilova D., Sendtner R., Andrieu-Soler C., Taskesen E., Nieradka A., Cmejla R., Sendtner M., Touw I.P., et al. Ribosomal Deficiencies in Diamond-Blackfan Anemia Impair Translation of Transcripts Essential for Differentiation of Murine and Human Erythroblasts. Blood. 2012;119:262–272. doi: 10.1182/blood-2011-06-358200. PubMed DOI

Alexander A., Walker C.L. Differential localization of ATM is correlated with activation of distinct downstream signaling pathways. Cell Cycle. 2010;9:3685–3686. doi: 10.4161/cc.9.18.13253. PubMed DOI PMC

Mohanty J.G., Nagababu E., Rifkind J.M. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front. Physiol. 2014;5:84. doi: 10.3389/fphys.2014.00084. PubMed DOI PMC

Rogers S.C., Said A., Corcuera D., McLaughlin D., Kell P., Doctor A. Hypoxia limits antioxidant capacity in red blood cells by altering glycolytic pathway dominance. FASEB J. 2009;23:3159–3170. doi: 10.1096/fj.09-130666. PubMed DOI PMC

Bester J., Pretorius E. Effects of IL-1β, IL-6 and IL-8 on erythrocytes, platelets and clot viscoelasticity. Sci. Rep. 2016;6:32188. doi: 10.1038/srep32188. PubMed DOI PMC

Aspesi A., Pavesi E., Robotti E. Dissecting the Transcriptional Phenotype of Ribosomal Protein Deficiency: Implications for Diamond-Blackfan Anemia. Gene. 2014;545:282–289. doi: 10.1016/j.gene.2014.04.077. PubMed DOI PMC

Danilova N., Sakamoto K.M., Lin S. Ribosomal Protein L11 Mutation in Zebrafish Leads to Haematopoietic and Metabolic Defects. Br. J. Haematol. 2011;152:217–228. doi: 10.1111/j.1365-2141.2010.08396.x. PubMed DOI PMC

Alexander A., Cai S., Kim J., Nanez A., Sahin M., MacLean K.H., Inoki K., Guan K., Shen J., Person M.D., et al. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc. Natl. Acad. Sci. USA. 2010;107:4153–4158. doi: 10.1073/pnas.0913860107. PubMed DOI PMC

Kampen K.R., Sulima S.O., Vereecke S., De Keersmaecker K. The Ribosomal RPL10 R98S Mutation Drives IRES-dependent BCL-2 Translation in T-ALL. Leukemia. 2019;33:319–332. doi: 10.1038/s41375-018-0176-z. PubMed DOI PMC

Sulima S.O., Kampen K.R., Vereecke S., Pepe D., Fancello L., Verbeeck J., Dinman J.D., De Keersmaecker K. Ribosomal Lesions Promote Oncogenic Mutagenesis. Cancer Res. 2019;79:320–327. doi: 10.1158/0008-5472.CAN-18-1987. PubMed DOI PMC

Lindstrom M.S., Jin A., Deisenroth C., White Wolf G., Zhang Y. Cancer-associated mutations in the MDM2 zinc finger domain disrupt ribosomal protein interaction and attenuate MDM2-induced p53 degradation. Mol. Cell Biol. 2007;27:1056–1068. doi: 10.1128/MCB.01307-06. PubMed DOI PMC

Pestov D.G., Strezoska Z., Lau L.F. Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: Effects of nucleolar protein Bop1 on G(1)/S transition. Mol. Cell Biol. 2001;21:4246–4255. doi: 10.1128/MCB.21.13.4246-4255.2001. PubMed DOI PMC

Matsui K., Giri N., Alter B.P., Pinto L.A. Cytokine production by bone marrow mononuclear cells in inherited bone marrow failure syndromes. Br. J. Haematol. 2013;163:81–92. doi: 10.1111/bjh.12475. PubMed DOI PMC

Danilova N., Wilkes M., Bibikova E., Youn M.Y., Sakamoto K.M., Lin S. Innate immune system activation in zebrafish and cellular models of Diamond Blackfan Anemia. Sci. Rep. 2018;8:5165. doi: 10.1038/s41598-018-23561-6. PubMed DOI PMC

Cooks T., Harris C.C., Oren M. Caught in the cross fire: p53 in inflammation. Carcinogenesis. 2014;35:1680–1690. doi: 10.1093/carcin/bgu134. PubMed DOI PMC

Gudkov A.V., Gurova K.V., Komarova E.A. Inflammation and p53. A Tale of Two Stresses. Genes Cancer. 2011;2:503–516. doi: 10.1177/1947601911409747. PubMed DOI PMC

McHugh D., Gil J. Senescence and aging: Causes, consequences, and therapeutic avenues. J. Cell Biol. 2018;217:65–77. doi: 10.1083/jcb.201708092. PubMed DOI PMC

Childs B.G., Baker D.J., Kirkland J.L., Campisi J., van Deursen J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014;15:1139–1153. doi: 10.15252/embr.201439245. PubMed DOI PMC

Khan A., Ali A., Junaid M., Liu C., Kaushik A.C., Cho W.C.S., Wei D.Q. Identification of novel drug targets for diamond-blackfan anemia based on RPS19 gene mutation using protein-protein interaction network. BMC Syst. Biol. 2018;12:39. doi: 10.1186/s12918-018-0563-0. PubMed DOI PMC

Jason J., Archibald L.K., Nwanyanwu O.C., Byrd M.G., Kazembe P.N., Dobbie H., Jarvis W.R. Comparison of serum and cell-specific cytokines in humans. Clin. Diagn. Lab. Immunol. 2001;8:1097–1103. doi: 10.1128/CDLI.8.6.1097-1103.2001. PubMed DOI PMC

Johnson R.A., Waddelow T.A., Caro J., Oliff A., Roodman G.D. Chronic exposure to tumor necrosis factor in vivo preferentially inhibits erythropoiesis in nude mice. Blood. 1989;74:130–138. doi: 10.1182/blood.V74.1.130.130. PubMed DOI

Means R.T., Jr., Dessypris E.N., Krantz S.B. Inhibition of human erythroid colony-forming units by interleukin-1 is mediated by gamma interferon. J. Cell Physiol. 1992;150:59–64. doi: 10.1002/jcp.1041500109. PubMed DOI

Dai C.H., Price J.O., Brunner T., Krantz S.B. Fas ligand is present in human erythroid colony-forming cells and interacts with Fas induced by interferon γ to produce erythroid cell apoptosis. Blood. 1998;91:1235–1242. doi: 10.1182/blood.V91.4.1235. PubMed DOI

Hubackova S., Krejcikova K., Bartek J., Hodny Z. IL1- and TGFβ-Nox4 signaling, oxidative stress and DNA damage response are shared features of replicative, oncogene-induced, and drug-induced paracrine ‘bystander senescence’. Aging. 2012;4:932–951. doi: 10.18632/aging.100520. PubMed DOI PMC

Li J., Sejas D.P., Zhang X., Qiu Y., Nattamai K.J., Rani R., Rathbun K.R., Geiger H., Williams D.A., Bagby G.C., et al. TNF-alpha induces leukemic clonal evolution ex vivo in Fanconi anemia group C murine stem cells. J. Clin. Investig. 2007;117:3283–3295. doi: 10.1172/JCI31772. PubMed DOI PMC

Amer J., Dana M., Fibach E. The antioxidant effect of erythropoietin on thalassemic blood cells. Anemia. 2010;2010:978710. doi: 10.1155/2010/978710. PubMed DOI PMC

Beutler E., Blume K.G., Kaplan J.C., Löhr G.W., Ramot B., Valentine W.N. International Committee for Standardization in Haematology: Recommended methods for red-cell enzyme analysis. Br. J. Haematol. 1977;35:331–340. doi: 10.1111/j.1365-2141.1977.tb00589.x. PubMed DOI

Mojzikova R., Dolezel P., Pavlicek J., Mlejnek P., Pospisilova D., Divoky V. Partial glutathione reductase deficiency as a cause of diverse clinical manifestations in a family with unstable hemoglobin (Hemoglobin Haná, β63(E7) His-Asn) Blood Cells Mol. Dis. 2010;45:219–222. doi: 10.1016/j.bcmd.2010.07.003. PubMed DOI

Mojzikova R., Koralkova P., Holub D., Zidova Z., Pospisilova D., Cermak J., Striezencova Laluhova Z., Indrak K., Sukova M., Partschova M., et al. Iron status in patients with pyruvate kinase deficiency: Neonatal hyperferritinaemia associated with a novel frameshift deletion in the PKLR gene (p.Arg518fs), and low hepcidin to ferritin ratios. Br. J. Haematol. 2014;165:556–563. doi: 10.1111/bjh.12779. PubMed DOI

Gaikwad A., Nussenzveig R., Liu E., Gottshalk S., Chang K., Prchal J.T. In vitro expansion of erythroid progenitors from polycythemia vera patients leads to decrease in JAK2 V617F allele. Exp. Hematol. 2007;35:587–595. doi: 10.1016/j.exphem.2006.12.007. PubMed DOI PMC

Leberbauer C., Boulme F., Unfried G., Huber J., Beug H., Mullner E.W. Different steroids co-regulate long-term expansion versus terminal differentiation in primary human erythroid progenitors. Blood. 2005;105:85–94. doi: 10.1182/blood-2004-03-1002. PubMed DOI

Stetka J., Vyhlidalova P., Lanikova L., Koralkova P., Gursky J., Hlusi A., Flodr P., Hubackova S., Bartek J., Hodny Z., et al. Addiction to DUSP1 protects JAK2V617F-driven polycythemia vera progenitors against inflammatory stress and DNA damage, allowing chronic proliferation. Oncogene. 2019;38:5627–5642. doi: 10.1038/s41388-019-0813-7. PubMed DOI PMC

Muller G.W., Chen R., Huang S.Y., Corral L.G., Wong L.M., Patterson R.T., Chen Y., Kaplan G., Stirling D.I. Amino-substituted thalidomide analogs: Potent inhibitors of TNF-α production. Bioorg. Med. Chem. Lett. 1999;9:1625–1630. doi: 10.1016/S0960-894X(99)00250-4. PubMed DOI

Koledova Z., Kafkova L.R., Calabkova L., Krystof V., Dolezel P., Divoky V. Cdk2 inhibition prolongs G1 phase progression in mouse embryonic stem cells. Stem Cells Dev. 2010;19:181–194. doi: 10.1089/scd.2009.0065. PubMed DOI

Horvathova M., Kapralova K., Zidova Z., Dolezal D., Pospisilova D., Divoky V. Erythropoietin-driven signaling ameliorates the survival defect of DMT1-mutant erythroid progenitors and erythroblasts. Haematologica. 2012;97:1480–1488. doi: 10.3324/haematol.2011.059550. PubMed DOI PMC

Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods. 2012;9:671–675. doi: 10.1038/nmeth.2089. PubMed DOI PMC

Pfaffl M.W., Horgan G.W., Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:e36. doi: 10.1093/nar/30.9.e36. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...