Erythropoietin-driven signaling ameliorates the survival defect of DMT1-mutant erythroid progenitors and erythroblasts
Language English Country Italy Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
22580996
PubMed Central
PMC3487548
DOI
10.3324/haematol.2011.059550
PII: haematol.2011.059550
Knihovny.cz E-resources
- MeSH
- Apoptosis drug effects genetics MeSH
- Erythropoietin administration & dosage pharmacology MeSH
- Erythroblasts drug effects metabolism MeSH
- Erythrocyte Indices MeSH
- Erythroid Precursor Cells drug effects metabolism MeSH
- Hepcidins MeSH
- Anemia, Hypochromic drug therapy genetics metabolism MeSH
- Caspases metabolism MeSH
- Antimicrobial Cationic Peptides metabolism MeSH
- Bone Marrow drug effects metabolism MeSH
- Humans MeSH
- Mutation * MeSH
- Mice, Knockout MeSH
- Mice MeSH
- Cation Transport Proteins genetics MeSH
- Signal Transduction drug effects MeSH
- Cell Survival drug effects genetics MeSH
- Iron metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Erythropoietin MeSH
- HAMP protein, human MeSH Browser
- Hamp protein, mouse MeSH Browser
- Hepcidins MeSH
- Caspases MeSH
- Antimicrobial Cationic Peptides MeSH
- Cation Transport Proteins MeSH
- solute carrier family 11- (proton-coupled divalent metal ion transporters), member 2 MeSH Browser
- Iron MeSH
BACKGROUND: Hypochromic microcytic anemia associated with ineffective erythropoiesis caused by recessive mutations in divalent metal transporter 1 (DMT1) can be improved with high-dose erythropoietin supplementation. The aim of this study was to characterize and compare erythropoiesis in samples from a DMT1-mutant patient before and after treatment with erythropoietin, as well as in a mouse model with a DMT1 mutation, the mk/mk mice. DESIGN AND METHODS: Colony assays were used to compare the in vitro growth of pre-treatment and post-treatment erythroid progenitors in a DMT1-mutant patient. To enable a comparison with human data, high doses of erythropoietin were administered to mk/mk mice. The apoptotic status of erythroblasts, the expression of anti-apoptotic proteins, and the key components of the bone marrow-hepcidin axis were evaluated. RESULTS: Erythropoietin therapy in vivo or the addition of a broad-spectrum caspase inhibitor in vitro significantly improved the growth of human DMT1-mutant erythroid progenitors. A decreased number of apoptotic erythroblasts was detected in the patient's bone marrow after erythropoietin treatment. In mk/mk mice, erythropoietin administration increased activation of signal transducer and activator of transcription 5 (STAT5) and reduced apoptosis in bone marrow and spleen erythroblasts. mk/mk mice propagated on the 129S6/SvEvTac background resembled DMT1-mutant patients in having increased plasma iron but differed by having functional iron deficiency after erythropoietin administration. Co-regulation of hepcidin and growth differentiation factor 15 (GDF15) levels was observed in mk/mk mice but not in the patient. CONCLUSIONS: Erythropoietin inhibits apoptosis of DMT1-mutant erythroid progenitors and differentiating erythroblasts. Ineffective erythropoiesis associated with defective erythroid iron utilization due to DMT1 mutations has specific biological and clinical features.
See more in PubMed
Canonne-Hergaux F, Gruenheid S, Ponka P, Gros P. Cellular and subcellular localization of the Nramp2 iron transporter in the intestinal brush border and regulation by dietary iron. Blood. 1999;93(12):4406-17 PubMed
Canonne-Hergaux F, Zhang AS, Ponka P, Gros P. Characterization of the iron transporter DMT1 (NRMAP2/DCT1) in red blood cells of normal and anemic mk/mk mice. Blood. 2001; 98(13):3823-30 PubMed
Gunshin H, Fujiwara Y, Custodio AO, Direnzo C, Robine S, Andrews NC. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver. J Clin Invest. 2005; 115(5):1258-66 PubMed PMC
Fleming MD, Trenor CC, 3rd, Su MA, Foernzler D, Beier DR, Dietrich WF, et al. Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nat Genet. 1997; 16(4):383-6 PubMed
Bannerman RM, Edwards JA, Kreimer-Birnbaum M, McFarland E, Russell ES. Hereditary microcytic anaemia in the mouse; studies in iron distribution and metabolism. Br J Haematol. 1972; 23(2):235-45 PubMed
Mims MP, Guan Y, Pospisilova D, Priwitzerova M, Indrak K, Ponka P, et al. Identification of a human mutation of DMT1 in a patient with microcytic anemia and iron overload. Blood. 2005; 105(3):1337-42 PubMed
Iolascon A, d'Apolito M, Servedio V, Cimmino F, Piga A, Camaschella C. Microcytic anemia and hepatic iron overload in a child with compound heterozygous mutations in DMT1 (SCL11A2). Blood. 2006; 107(1):349-54 PubMed
Beaumont C, Delaunay J, Hetet G, Grandchamp B, de Montalembert M, Tchernia G. Two new human DMT1 gene mutations in a patient with microcytic anemia, low ferritinemia, and liver iron overload. Blood. 2006; 107(10):4168-70 PubMed
Blanco E, Kannengiesser C, Grandchamp B, Tasso M, Beaumont C. Not all DMT1 mutations lead to iron overload. Blood Cells Mol Dis. 2009; 43(2):199-201 PubMed
Bardou-Jacquet E, Island ML, Jouanolle AM, Détivaud L, Fatih N, Ropert M, et al. A novel N491S mutation in the human SLC11A2 gene impairs protein trafficking and in association with the G212V mutation leads to microcytic anemia and liver iron overload. Blood Cells Mol Dis. 2011; 47(4):243-8 PubMed
Priwitzerova M, Nie G, Sheftel AD, Pospisilova D, Divoky V, Ponka P. Functional consequences of the human DMT1 (SLC11A2) mutation on protein expression and iron uptakeM. Blood. 2005; 106(12):3985-7 PubMed
Lam-Yuk-Tseung S, Mathieu M, Gros P. Functional characterization of the E399D DMT1/NRAMP2/SLC11A2 protein produced by an exon 12 mutation in a patient with microcytic anemia and iron overload. Blood Cells Mol Dis. 2005; 35(2):212-6 PubMed
Priwitzerova M, Pospisilova D, Prchal JT, Indrak K, Hlobilkova A, Mihal V, et al. Severe hypochromic microcytic anemia caused by a congenital defect of the iron transport pathway in erythroid cells. Blood. 2004; 103(10):3991-2 PubMed
Ponka P, Schulman HM. Acquisition of iron from transferrin regulates reticulocyte heme synthesis. J Biol Chem. 1985; 260(27):14717-21 PubMed
Pospisilova D, Mims MP, Nemeth E, Ganz T, Prchal JT. DMT1 mutation: response of anemia to darbepoetin administration and implications for iron homeostasis. Blood. 2006; 108(1):404-5 PubMed PMC
Iolascon A, Camaschella C, Pospisilova D, Piscopo C, Tchernia G, Beaumont C. Natural history of recessive inheritance of DMT1 mutations. J Pediatr. 2008; 152(1):136-9 PubMed
Testa U. Apoptotic mechanisms in the control of erythropoiesis. Leukemia. 2004; 18(7):1176-99 PubMed
Mathias LA, Fisher TC, Zeng L, et al. Ineffective erythropoiesis in beta-thalassemia major is due to apoptosis at the polychromatophilic normoblast stage. Exp Hematol. 2000; 28(12):1343-53 PubMed
Libani IV, Guy EC, Melchiori L, Schiro R, Ramos P, Breda L, et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in beta-thalassemia. Blood. 2008; 112(3):875-85 PubMed PMC
Zadrazil J, Horak P, Horcicka V, Zahalkova J, Strebl P, Hruby M. Endogenous erythropoietin levels and anemia in long-term renal transplant recipients. Kidney Blood Press Res. 2007; 30(2):108-16 PubMed
Peng H, Truksa J, Lee P. EPO-mediated reduction in Hamp expression in vivo corrects iron deficiency anaemia in TMPRSS6 deficiency. Br J Haematol. 2010; 151(1):106-9 PubMed PMC
Prchal JF, Adamson JW, Murphy S, Steinmann L, Fialkow PJ. Polycythemia vera. The in vitro response of normal and abnormal stem cell lines to erythropoietin. J Clin Invest. 1978; 61(4):1044-7 PubMed PMC
Constantinescu SN, Ghaffari S, Lodish HF. The Erythropoietin Receptor: Structure, Activation and Intracellular Signal Transduction. Trends Endocrinol Metab. 1999; 10(1):18-23 PubMed
Gregoli PA, Bondurant MC. Function of caspases in regulating apoptosis caused by erythropoietin deprivation in erythroid progenitors. J Cell Physiol. 1998; 178(2):133-43 PubMed
Ribeil JA, Zermati Y, Vandekerckhove J, Cathelin S, Kersual J, Dussiot M, et al. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 2007; 445(7123):102-5 PubMed
Rhodes MM, Kopsombut P, Bondurant MC, Price JO, Koury MJ. Bcl-x(L) prevents apoptosis of late-stage erythroblasts but does not mediate the antiapoptotic effect of erythropoietin. Blood. 2005; 106(5):1857-63 PubMed PMC
Gregoli PA, Bondurant MC. The roles of Bcl-X(L) and apopain in the control of erythropoiesis by erythropoietin. Blood. 1997; 90(2):630-40 PubMed
Ganz T. Hepcidin in iron metabolism. Curr Opin Hematol. 2004; 11(4):251-4 PubMed
Tanno T, Bhanu NV, Oneal PA, Goh SH, Staker P, Lee YT, et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat Med. 2007; 13(9):1096-101 PubMed
Tanno T, Porayette P, Sripichai O, Noh SJ, Byrnes C, Bhupatiraju A, et al. Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood. 2009; 114(1):181-6 PubMed PMC
Tanno T, Noel P, Miller JL. Growth differentiation factor 15 in erythroid health and disease. Curr Opin Hematol 2010; 17(3):184-90 PubMed PMC
Iolascon A, de Falco L, Beaumont C. Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis. Haematologica 2009; 94(3):395-408 PubMed PMC
Sathyanarayana P, Dev A, Fang J, Houde E, Bogacheva O, Bogachev O, et al. EPO receptor circuits for primary erythroblast survival. Blood. 2008; 111(11):5390-9 PubMed PMC
Sladic-Simic D, Zivkovic N, Pavic D, Marinkovic D, Martinovic J, Martinovitch PN. Hereditary hypochromic microcytic anemia in the laboratory rat. Genetics 1966; 53(6):1079-89 PubMed PMC
Gunshin H, Jin J, Fujiwara Y, Andrews NC, Mims M, Prchal J. Analysis of the E399D mutation in SLC11A2. Blood. 2005; 106(6):2221-. PubMed
Thompson K, Molina RM, Brain JD, Wessling-Resnick M. Belgrade rats display liver iron loading. J Nutr. 2006; 136(12):3010-4 PubMed PMC
Loo M, Beguin Y. The effect of recombinant human erythropoietin on platelet counts is strongly modulated by the adequacy of iron supply. Blood. 1999; 93(10):3286-93 PubMed
Ginzburg Y, Rivella S. {beta}-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood. 2011; 118(16):4321-30 PubMed PMC
Tanno T, Miller JL. Iron loading and overloading due to ineffective erythropoiesis. Adv Hematol. 2010; 2010:358283. PubMed PMC
Schrier SL. Pathophysiology of thalassemia. Curr Opin Hematol. 2002; 9(2):123-6 PubMed
Ganz T. Hepcidin and iron regulation, 10 years later. Blood. 2011; 117(17):4425-33 PubMed PMC
Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE, Rainey K, et al. Hypoxiainducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem. 2006; 281(35):25703-11 PubMed
Gordeuk VR, Miasnikova GY, Sergueeva AI, Niu X, Nouraie M, Okhotin DJ, et al. Chuvash polycythemia VHLR200W mutation is associated with down-regulation of hepcidin expression. Blood. 2011; 118(19):5278-82 PubMed PMC
Vokurka M, Krijt J, Sulc K, Necas E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol Res 2006; 55(6):667-74 PubMed
Ashby DR, Gale DP, Busbridge M, Murphy KG, Duncan ND, Cairns TD, et al. Erythropoietin administration in humans causes a marked and prolonged reduction in circulating hepcidin. Haematologica 2010; 95 (3):505-8 PubMed PMC