Powder diffraction in Bragg-Brentano geometry with straight linear detectors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
J 3523
Austrian Science Fund FWF - Austria
PubMed
25844084
PubMed Central
PMC4379442
DOI
10.1107/s1600576715003465
PII: po5035
Knihovny.cz E-zdroje
- Klíčová slova
- Bragg–Brentano, line shape, linear detector, powder diffraction, resolution function,
- Publikační typ
- časopisecké články MeSH
A common way of speeding up powder diffraction measurements is the use of one- or two-dimensional detectors. This usually goes hand in hand with worse resolution and asymmetric peak profiles. In this work the influence of a straight linear detector on the resolution function in the Bragg-Brentano focusing geometry is discussed. Because of the straight nature of most modern detectors geometrical defocusing occurs, which heavily influences the line shape of diffraction lines at low angles. An easy approach to limit the resolution-degrading effects is presented. The presented algorithm selects an adaptive range of channels of the linear detector at low angles, resulting in increased resolution. At higher angles the whole linear detector is used and the data collection remains fast. Using this algorithm a well behaved resolution function is obtained in the full angular range, whereas using the full linear detector the resolution function varies within one pattern, which hinders line-shape and Rietveld analysis.
Zobrazit více v PubMed
Bergamaschi, A., Broennimann, C., Dinapoli, R., Eikenberry, E., Gozzo, F., Henrich, B., Kobas, M., Kraft, P., Patterson, B. & Schmitt, B. (2008). Nucl. Instrum. Methods Phys. Res. Sect. A, 591, 163–166.
Bruker Corporation (2015). Bruker LYNXEYE XE 1D Detector, http://www.bruker.com.
Caglioti, G., Paoletti, A. & Ricci, F. P. (1958). Nucl. Instrum. 3, 223–228.
Cheary, R. W. & Coelho, A. (1992). J. Appl. Cryst. 25, 109–121.
Cheary, R. W. & Coelho, A. (1994). J. Appl. Cryst. 27, 673–681.
Coelho, A. A., Evans, J., Evans, I., Kern, A. & Parsons, S. (2011). Powder Diffr. 26 (Suppl. S1), S22–S25.
Dectris (2014). MYTHEN Detector System, https://www.dectris.com/mythen_configurations.html.
Dinnebier, R. E. & Billinge, S. J. L. (2008). Powder Diffraction: Theory and Practice. Cambridge: Royal Society of Chemistry.
Göbel, H. E. (1979). Adv. X-ray Anal. 22, 255–265.
Guinebretière, R. (2013). X-ray Diffraction by Polycrystalline Materials. London: Wiley-ISTE.
Guinebretière, R., Boulle, A., Masson, O. & Dauger, A. (2005). Powder Diffr. 20, 294–305.
He, B. B. (2009). Two-Dimensional X-ray Diffraction. New Jersey: Wiley.
Klug, H. P. & Alexander, L. E. (1974). X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials. New York: John Wiley and Sons.
Kriegner, D., Wintersberger, E. & Stangl, J. (2013). J. Appl. Cryst. 46, 1162–1170. PubMed PMC
Langford, J. I. & Louër, D. (1996). Rep. Prog. Phys. 59, 131.
Larson, A. & Von Dreele, R. (2000). GSAS. Report LAUR 86–748. Los Alamos National Laboratory, New Mexico, USA.
Leoni, M., Confente, T. & Scardi, P. (2006). Z. Kristallogr. (Suppl.), 2006, 249–254.
Liermann, H.-P., Morgenroth, W., Ehnes, A., Berghäuser, A., Winkler, B., Franz, H. & Weckert, E. (2010). J. Phys. Conf. Ser. 215, 012029.
Louër, D. & Langford, J. I. (1988). J. Appl. Cryst. 21, 430–437.
Lutterotti, L., Matthies, S. & Wenk, H. R. (1999). IUCr Commission on Powder Diffraction Newsletter, No. 21, pp. 14–15.
Materěj, Z., Kadlecová, A., Janeček, M., Materějová, L., Dopita, M. & Kužel, R. (2014). Powder Diffr. 29 (Suppl. S2), S35–S41.
Materěj, Z., Kužel, R. & Nichtová, L. (2010). Powder Diffr. 25, 125–131.
McCusker, L. B., Von Dreele, R. B., Cox, D. E., Louër, D. & Scardi, P. (1999). J. Appl. Cryst. 32, 36–50.
Mittemeijer, E. J. & Scardi, P. (2004). Diffraction Analysis of the Microstructure of Materials, Springer Series in Materials Science. Berlin, Heidelberg: Springer-Verlag.
Mittemeijer, E. J. & Welzel, U. (2013). Modern Diffraction Methods. Weinheim: Wiley VCH.
National Institute of Standards & Technology (2010). SRM 660b – Line Position and Line Shape Standard for Powder Diffraction, https://www-s.nist.gov/srmors/view_detail.cfm?srm=660b.
Paszkowicz, W. (2005). Nucl. Instrum. Methods Phys. Res. Sect. A, 551, 162–177.
Petříček, V., Dušek, M. & Palatinus, L. (2014). Z. Kristallogr. 229, 345–352.
Reiss, C. A. (2002). IUCr Commission on Powder Diffraction Newsletter, No. 27, pp. 21–23.
Ribárik, G., Ungár, T. & Gubicza, J. (2001). J. Appl. Cryst. 34, 669–676.
Rietveld, H. M. (1969). J. Appl. Cryst. 2, 65–71.
Rodríguez- Carvajal, J. (1993). Phys. B Condens. Matter, 192, 55–69.
Scardi, P. & Leoni, M. (2002). Acta Cryst. A58, 190–200. PubMed
Schmitt, B., Brönnimann, C., Eikenberry, E. F., Gozzo, F., Hörmann, C., Horisberger, R. & Patterson, B. (2003). Nucl. Instrum. Methods Phys. Res. Sect. A, 501, 267–272.
Słowik, J. & Zięba, A. (2001). J. Appl. Cryst. 34, 458–464.
Wright, V., Davidson, W., Melone, J., O’Shea, V., Smith, K., Donnohue, L., Lea, L., Robb, K., Nenonen, S. & Silpila, H. (2004). Nuclear Science Symposium Conference Record, Vol. 2, pp. 1336–1343. IEEE Conference Publications.
Young, R. A. & Wiles, D. B. (1982). J. Appl. Cryst. 15, 430–438.