Assessment of genetic and epigenetic stability in long-term in vitro shoot culture of pea (Pisum sativum L.)

. 2007 Nov ; 26 (11) : 1985-98. [epub] 20070801

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid17668220

In vitro clonal propagation of plants should generate identical copies of the selected genotype. However, associated stress might result in a breakdown of control mechanisms and consequent instability of the genome. We have used several molecular methods to assess the genetic stability of long-term propagated (24 years) multiple shoot in vitro culture of pea (Pisum sativum L.). We focused on assessing the stability of repetitive sequences, such as simple sequence repeats (SSR) and retrotransposons, both comprising a large part of genome. No differences were found when seedlings (Co-2004) or original seed (Co-1982) controls and long-term or newly established in vitro (one subculture cycle) samples were investigated by the SSR, inter-repeats (ISSR) or inter-retrotransposon amplified polymorphism (IRAP) method. However, the more global amplified fragment length polymorphism (AFLP) and particularly the methylation sensitive MSAP methods detected 11 and 18% polymorphism among samples, respectively. Interestingly, investigation of the global cytosine methylation status by HPCE measurement revealed no statistically significant differences. Some evidence of retrotransposon re-arrangement was observed by sequence-specific amplification polymorphism. This occurred mostly in the abundant Ty3-gypsy type Cyclop element and to a smaller extent in the Ogre element. Alternatively, no polymorphism was detected among the PDR-1 element of the Ty1-copia type retrotransposon. Based on these results, multiple shoot culture of pea maintained over a long period may be considered as a true to type multiplication method of the original genotype.

Zobrazit více v PubMed

Mol Biol Evol. 2003 Dec;20(12):2067-75 PubMed

Nucleic Acids Res. 1995 Nov 11;23(21):4407-14 PubMed

Theor Appl Genet. 1981 Oct;60(4):197-214 PubMed

Science. 2001 Aug 10;293(5532):1070-4 PubMed

Exp Cell Res. 1968 Apr;50(1):151-8 PubMed

Theor Appl Genet. 2004 Jun;109(1):200-9 PubMed

Genome. 2004 Feb;47(1):224-8 PubMed

Nature. 2003 Jan 9;421(6919):163-7 PubMed

Anal Biochem. 1991 Jul;196(1):80-3 PubMed

Plant Sci. 2001 Jul;161(2):359-367 PubMed

Genetika. 2005 Jan;41(1):71-7 PubMed

Plant Physiol. 1989 Oct;91(2):451-4 PubMed

Theor Appl Genet. 2004 Sep;109(5):899-910 PubMed

Mol Gen Genet. 1998 Oct;260(1):9-19 PubMed

Theor Appl Genet. 1992 Sep;84(7-8):874-9 PubMed

Theor Appl Genet. 2004 May;108(7):1309-21 PubMed

J Hered. 1996 May-Jun;87(3):233-7 PubMed

Plant Mol Biol. 2003 Oct;53(3):399-410 PubMed

Plant Cell Rep. 1989 Apr;8(4):199-202 PubMed

Plant Mol Biol. 2003 May;52(1):69-79 PubMed

Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603-7 PubMed

Plant Cell Rep. 2000 Jun;19(7):684-690 PubMed

EMBO J. 1993 Jun;12(6):2521-8 PubMed

Theor Appl Genet. 1992 Aug;84(5-6):600-7 PubMed

Genes Dev. 2003 Jun 15;17(12):1540-53 PubMed

Plant Cell Rep. 1987 Oct;6(5):365-8 PubMed

Mol Genet Genomics. 2001 May;265(3):497-507 PubMed

Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7704-11 PubMed

Science. 2004 Mar 12;303(5664):1626-32 PubMed

Theor Appl Genet. 2005 Oct;111(6):1022-31 PubMed

Nature. 1994 Mar 31;368(6470):455-7 PubMed

Plant Mol Biol. 1998 May;37(2):363-75 PubMed

Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7783-8 PubMed

Plant Cell Rep. 2005 Mar;23(12):790-5 PubMed

Nat Rev Genet. 2004 Jun;5(6):435-45 PubMed

Science. 1984 Nov 16;226(4676):792-801 PubMed

Russ J Genet. 2005;41(4):378-388 PubMed

Curr Biol. 1996 Aug 1;6(8):959-61 PubMed

J Appl Genet. 2006;47(3):221-30 PubMed

Electrophoresis. 2002 Jun;23(11):1677-81 PubMed

Proc Natl Acad Sci U S A. 1994 Jun 7;91(12):5222-6 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...