Estimation of pea (Pisum sativum L.) microsatellite mutation rate based on pedigree and single-seed descent analyses

. 2011 Nov ; 52 (4) : 391-401. [epub] 20110719

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21769669

Microsatellites, or simple sequence repeats (SSRs) are widespread class of repetitive DNA sequences, used in population genetics, genetic diversity and mapping studies. In spite of the SSR utility, the genetic and evolutionary mechanisms are not fully understood. We have investigated three microsatellite loci with different position in the pea (Pisum sativum L.) genome, the A9 locus residing in LTR region of abundant retrotransposon, AD270 as intergenic and AF016458 located in 5'untranslated region of expressed gene. Comparative analysis of a 35 pair samples from seven pea varieties propagated by single-seed descent for ten generations, revealed single 4 bp mutation in 10th generation sample at AD270 locus corresponding to stepwise increase in one additional ATCT repeat unit. The estimated mutation rate was 4.76 × 10(-3) per locus per generation, with a 95% confidence interval of 1.2 × 10(-4) to 2.7 × 10(-2). The comparison of cv. Bohatýr accessions retrieved from different collections, showed intra-, inter-accession variation and differences in flanking and repeat sequences. Fragment size and sequence alternations were also found in long term in vitro organogenic culture, established at 1983, indicative of somatic mutation process. The evidence of homoplasy was detected across of unrelated pea genotypes, which adversaly affects the reliability of diversity estimates not only for diverse germplasm but also highly bred material. The findings of this study have important implications for Pisum phylogeny studies, variety identification and registration process in pea breeding where mutation rate influences the genetic diversity and the effective population size estimates.

Zobrazit více v PubMed

Science. 2009 May 29;324(5931):1213-6 PubMed

Plant J. 1998 Jun;14(5):573-81 PubMed

Mol Biol Evol. 2003 Sep;20(9):1480-3 PubMed

Biotechniques. 2010 Apr;48(4):277-85 PubMed

Plant Cell Rep. 2010 Jan;29(1):51-9 PubMed

Plant Cell Rep. 2007 Nov;26(11):1985-98 PubMed

Bioessays. 2006 Oct;28(10):1040-50 PubMed

Theor Appl Genet. 2009 Nov;119(7):1213-22 PubMed

Genetics. 2004 Nov;168(3):1231-48 PubMed

J Hered. 2004 Mar-Apr;95(2):172-6 PubMed

Plant J. 1999 Feb;17(4):415-25 PubMed

Mol Biotechnol. 2010 Mar;44(3):250-66 PubMed

Chromosoma. 2000 Sep;109(6):365-71 PubMed

Heredity (Edinb). 2009 Oct;103(4):310-7 PubMed

Heredity (Edinb). 2009 Aug;103(2):157-67 PubMed

Genetics. 2008 Apr;178(4):2113-21 PubMed

BMC Genet. 2010 May 18;11:41 PubMed

Theor Appl Genet. 2004 May;108(7):1309-21 PubMed

Genome Res. 1999 Sep;9(9):830-8 PubMed

Mol Cells. 2005 Jun 30;19(3):428-35 PubMed

Theor Appl Genet. 2007 Nov;115(7):981-91 PubMed

Genet Res. 1973 Oct;22(2):201-4 PubMed

BMC Evol Biol. 2008 May 09;8:138 PubMed

BMC Genomics. 2006 Dec 25;7:323 PubMed

J Appl Genet. 2008;49(2):155-66 PubMed

Genetica. 2002 Mar;114(2):113-9 PubMed

Am J Hum Genet. 1998 Jun;62(6):1408-15 PubMed

Genetics. 1964 Apr;49:725-38 PubMed

Genet Res. 2000 Dec;76(3):323-6 PubMed

Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3166-70 PubMed

Mol Genet Genomics. 2001 Aug;265(6):1097-103 PubMed

Science. 2005 Jun 10;308(5728):1630-4 PubMed

Science. 2010 Jan 1;327(5961):92-4 PubMed

Theor Appl Genet. 2005 Oct;111(6):1022-31 PubMed

Trends Genet. 2006 May;22(5):253-9 PubMed

Mol Biol Evol. 2002 Aug;19(8):1251-60 PubMed

Theor Appl Genet. 2002 Sep;105(4):532-543 PubMed

Genetics. 2005 Oct;171(2):741-52 PubMed

Plant Cell Rep. 2005 Mar;23(12):790-5 PubMed

Nat Rev Genet. 2004 Jun;5(6):435-45 PubMed

Theor Appl Genet. 2008 Aug;117(3):413-24 PubMed

Mol Biol Evol. 2002 Jan;19(1):122-5 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...