Transcriptomics insight into occupational exposure to engineered nanoparticles

. 2025 Jul ; 20 (14) : 1713-1727. [epub] 20250703

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40605826

AIM: To investigate the effect of acute (daily) inhalation of nanoparticles (NPs) on the transcriptomic profile of male nanocomposite research workers with a history of long-term exposure (years). MATERIALS & METHODS: Whole genome mRNA and miRNA expression changes were analyzed from blood samples collected before and after machining or welding. Exposure in the work environment was assessed using stationary and personal monitoring. RESULTS: Following PM0.1 exposure, a significant decrease in the expression of DDIT4 and FKBP5, genes involved in the stress response, was detected in exposed workers. In the Machining group, the DDIT4 expression correlated with the exposure dose. Increased levels of miR30-d-5p and miR-3613-5p (both involved in carcinogenesis) in welders were associated with the NP exposure dose, highlighting their potential suitability as inhalation exposure markers. CONCLUSION: The results from this pilot transcriptomic analysis (mRNA and miRNA) indicate that exposure to NPs contributes to immune system deregulation and alters the pathways related to cancer. Therefore, the use of protective equipment, as well as obtaining more data by additional research, is highly recommended.

This is a follow-up study to our previous research that examined the acute effects of occupational inhalation exposure to nanoparticles (NPs) in females without a previous exposure history. This time, we reexamined the impacts of acute exposure in a group of 18 male workers, including welders and nanocomposite machinists with a long-term previous exposure history at the transcriptomic level. Whole genome transcriptomics studies the complete set of RNA molecules, or transcripts, produced in a cell or organism at a specific time. The analysis allows us to understand which genes are active/inactive, how they are regulated, and how they contribute to various biological processes or diseases. We looked at changes in mRNA and miRNA (types of RNA) from blood samples taken before and after workers were exposed to dust and fumes during machining and welding. We also monitored the exposure doses. The results suggest that inhaled NPs may present an occupational hazard to human health. The transcriptomic analysis shows that exposure to welding fumes and nanocomposite dust from machining affects the immune system and alters cancer-related pathways. Our research helps to understand NP exposure effects and may contribute to minimizing the negative health consequences of their inhalation.

Zobrazit více v PubMed

Bayda S, Adeel M, Tuccinardi T, et al. The history of nanoscience and nanotechnology: from chemical-physical applications to nanomedicine. Molecule. 2019;25(1):112. doi: 10.3390/molecules25010112 PubMed DOI PMC

Li S, Meng Lin M, Toprak MS, et al. Nanocomposites of polymer and inorganic nanoparticles for optical and magnetic applications. Nano Rev. 2010;1(1):5214. doi: 10.3402/nano.v1i0.5214 PubMed DOI PMC

Hassan T, Salam A, Khan A, et al. Functional nanocomposites and their potential applications: a review. J Polym Res. 2021;28(2):36. doi: 10.1007/s10965-021-02408-1 DOI

Bekker C, Brouwer DH, Tielemans E, et al. Industrial production and professional application of manufactured nanomaterials-enabled end products in Dutch industries: potential for exposure. Ann Occup Hyg. 2013;57(3):314–327. doi: 10.1093/annhyg/mes072 PubMed DOI

Shin SW, Song IH, Um SH.. Role of physicochemical properties in nanoparticle toxicity. Nanomater (Basel). 2015;5(3):1351–1365. doi: 10.3390/nano5031351 PubMed DOI PMC

Fröhlich E, Salar-Behzadi S.. Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, in vitro, and in silico studies. Int J Mol Sci. 2014;15(3):4795–4822. doi: 10.3390/ijms15034795 PubMed DOI PMC

Chen Z, Meng H, Xing G, et al. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environ Sci Technol. 2008;42(23):8985–8992. doi: 10.1021/es800975u PubMed DOI

Yang H, Wu QY, Li MY, et al. Pulmonary toxicity in rats caused by exposure to intratracheal instillation of SiO2 nanoparticles. Biomed Environ Sci. 2017;30(4):264–279. doi: 10.3967/bes2017.036 PubMed DOI

Schulte PA, Leso V, Niang M, et al. Current state of knowledge on the health effects of engineered nanomaterials in workers: a systematic review of human studies and epidemiological investigations. Scand J Work Environ Health. 2019;45(3):217–238. doi: 10.5271/sjweh.3800 PubMed DOI PMC

Vogel U, Jensen KA, Saber AT, et al. Lessons from nanosafety research for effective regulation and safer handling of nanomaterials at the workplace. Societal Impacts. 2023;1(1–2):100016. doi: 10.1016/j.socimp.2023.100016 DOI

WHO . WHO guidelines on protecting workers from potential risks of manufactured nanomaterials. 2017. PubMed

Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823–839. doi: 10.1289/ehp.7339 PubMed DOI PMC

Liou S-H, Tsai CSJ, Pelclova D, et al. Assessing the first wave of epidemiological studies of nanomaterial workers. J Nanopart Res. 2015;17(10):413. doi: 10.1007/s11051-015-3219-7 PubMed DOI PMC

Pelclova D, Zdimal V, Komarc M, et al. Deep airway inflammation and respiratory disorders in nanocomposite workers. Nanomater (Basel). 2018;8(9):731. doi: 10.3390/nano8090731 PubMed DOI PMC

Pelclova D, Zdimal V, Komarc M, et al. Three-year study of markers of oxidative stress in exhaled breath condensate in workers producing nanocomposites, extended by plasma and urine analysis in last two years. Nanomater (Basel). 2020;10(12):2440. doi: 10.3390/nano10122440 PubMed DOI PMC

Pelclova D, Zdimal V, Schwarz J, et al. Markers of oxidative stress in the exhaled breath condensate of workers handling nanocomposites. Nanomater (Basel). 2018;8(8):611. doi: 10.3390/nano8080611 PubMed DOI PMC

Klusackova P, Lischkova L, Kolesnikova V, et al. Elevated glutathione in researchers exposed to engineered nanoparticles due to potential adaptation to oxidative stress. Nanomedicine (Lond). 2024;19(3):185–198. doi: 10.2217/nnm-2023-0207 PubMed DOI

Novotna B, Pelclova D, Rossnerova A, et al. The genotoxic effects in the leukocytes of workers handling nanocomposite materials. Mutagenesis. 2020;35(4):331–340. doi: 10.1093/mutage/geaa016 PubMed DOI

Rossnerova A, Pelclova D, Zdimal V, et al. The repeated cytogenetic analysis of subjects occupationally exposed to nanoparticles: a pilot study. Mutagenesis. 2019;34(3):253–263. doi: 10.1093/mutage/gez016 PubMed DOI

Rossnerova A, Honkova K, Pelclova D, et al. DNA methylation profiles in a group of workers occupationally exposed to nanoparticles. Int J Mol Sci. 2020;21(7):2420. doi: 10.3390/ijms21072420 PubMed DOI PMC

Simova Z, Sima M, Pelclova D, et al. Transcriptome changes in humans acutely exposed to nanoparticles during grinding of dental nanocomposites. Nanomedicine. 2024;19(17):1511–1523. doi: 10.1080/17435889.2024.2362611 PubMed DOI PMC

Ewels PA, Peltzer A, Fillinger S, et al. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol. 2020;38(3):276–278. doi: 10.1038/s41587-020-0439-x PubMed DOI

Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 2015;4:1521. doi: 10.12688/f1000research.7563.1 PubMed DOI PMC

Love MI, Huber W, Anders S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC

Szklarczyk D, Kirsch R, Koutrouli M, et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–D646. doi: 10.1093/nar/gkac1000 PubMed DOI PMC

Chen Y, Wang X. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–D131. doi: 10.1093/nar/gkz757 PubMed DOI PMC

Rossnerova A, Izzotti A, Pulliero A, et al. The molecular mechanisms of adaptive response related to environmental stress. IJMS. 2020;21(19):7053. doi: 10.3390/ijms21197053 PubMed DOI PMC

Ibfelt E, Bonde JP, Hansen J. Exposure to metal welding fume particles and risk for cardiovascular disease in Denmark: a prospective cohort study. Occup Environ Med. 2010;67(11):772–777. doi: 10.1136/oem.2009.051086 PubMed DOI

Bessa MJ, Brandão F, Viana M, et al. Nanoparticle exposure and hazard in the ceramic industry: an overview of potential sources, toxicity and health effects. Environ Res. 2020;184:109297. doi: 10.1016/j.envres.2020.109297 PubMed DOI

Pelclova D, Navratil T, Schwarz JJ, et al. Preventive effect of precautionary lowered exposure or adaptation of nanomaterial workers? Cent Eur J Public Health. 2025. May 4;33(2):xx–xx. doi: 10.21101/cejph.a8524 PubMed DOI

Vandebroek E, Haufroid V, Smolders E, et al. Occupational exposure to metals in shooting ranges: a biomonitoring study. Saf Health Work. 2019;10(1):87–94. doi: 10.1016/j.shaw.2018.05.006 PubMed DOI PMC

Honaryar MK, Lunn RM, Luce D, et al. Welding fumes and lung cancer: a meta-analysis of case-control and cohort studies. Occup Environ Med. 2019;76(6):422–431. doi: 10.1136/oemed-2018-105447 PubMed DOI

Matrat M, Guida F, Mattei F, et al. Welding, a risk factor of lung cancer: the ICARE study. Occup Environ Med. 2016;73(4):254–261. doi: 10.1136/oemed-2015-102964 PubMed DOI

Van Loon AJ, Kant IJ, Swaen GM, et al. Occupational exposure to carcinogens and risk of lung cancer: results from the Netherlands cohort study. Occup Environ Med. 1997;54(11):817–824. doi: 10.1136/oem.54.11.817 PubMed DOI PMC

Hedmer M, Isaxon C, Nilsson PT, et al. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Ann Occup Hyg. 2014;58(3):355–379. doi: 10.1093/annhyg/met072 PubMed DOI

Insley AL, Maskrey JR, Hallett LA, et al. Occupational survey of airborne metal exposures to welders, metalworkers, and bystanders in small fabrication shops. J Occup Environ Hyg. 2019;16(6):410–421. doi: 10.1080/15459624.2019.1603389 PubMed DOI

Dauter UM, Gliga AR, Albin M, et al. Longitudinal changes in cardiovascular disease–related proteins in welders. Int Arch Occup Environ Health. 2024;97(7):803–812. doi: 10.1007/s00420-024-02086-8 PubMed DOI PMC

Vadysirisack DD, Baenke F, Ory B, et al. Feedback control of p53 translation by REDD1 and mTORC1 limits the p53-dependent DNA damage response. Mol Cell Biol. 2011;31(21):4356–4365. doi: 10.1128/MCB.05541-11 PubMed DOI PMC

Ding F, Gao F, Zhang S, et al. A review of the mechanism of DDIT4 serve as a mitochondrial related protein in tumor regulation. Sci Prog. 2021;104(1):0036850421997273. doi: 10.1177/0036850421997273 PubMed DOI PMC

Du F, Sun L, Chu Y, et al. DDIT4 promotes gastric cancer proliferation and tumorigenesis through the p53 and MAPK pathways. Cancer Commun. 2018;38(1):1–14. doi: 10.1186/s40880-018-0315-y PubMed DOI PMC

Lin X, Yoshikawa N, Liu W, et al. DDIT4 facilitates lymph node metastasis via the activation of NF-κB pathway and epithelial-mesenchymal transition. Reprod Sci. 2023;30(9):2829–2841. doi: 10.1007/s43032-023-01230-y PubMed DOI

Tirado-Hurtado I, Fajardo W, Pinto JA. DNA damage inducible transcript 4 gene: the switch of the metabolism as potential target in cancer. Front Oncol. 2018;8:106. doi: 10.3389/fonc.2018.00106 PubMed DOI PMC

Tong M, Jiang Y. FK506-binding proteins and their diverse functions. CMP. 2015;9(1):48–65. doi: 10.2174/1874467208666150519113541 PubMed DOI PMC

Zgajnar N, De Leo S, Lotufo C, et al. Biological actions of the Hsp90-binding immunophilins FKBP51 and FKBP52. Biomol. 2019;9(2):52. doi: 10.3390/biom9020052 PubMed DOI PMC

Guidotti G, Calabrese F, Anacker C, et al. Glucocorticoid Receptor and FKBP5 expression is altered following exposure to chronic stress: modulation by antidepressant treatment. Neuropsychopharmacol. 2013;38(4):616–627. doi: 10.1038/npp.2012.225 PubMed DOI PMC

Romano S, Sorrentino A, Di Pace L, et al. The emerging role of large immunophilin FK506 binding protein 51 in cancer. CMC. 2011;18(35):5424–5429. doi: 10.2174/092986711798194333 PubMed DOI PMC

Zhang S, Cheon M, Park H, et al. Interaction between glucocorticoid receptors and FKBP5 in regulating neurotransmission of the hippocampus. Neuroscience. 2022;483:95–103. doi: 10.1016/j.neuroscience.2021.12.020 PubMed DOI

Grandjean P. Individual susceptibility in occupational and environmental toxicology. Toxicol Lett. 1995;77(1–3):105–108. doi: 10.1016/0378-4274(95)03278-9 PubMed DOI

Bailey MR, Kreyling WG, Andre S, et al. An interspecies comparison of the lung clearance of inhaled monodisperse cobalt oxide particles—part I: objectives and summary of results. J Aerosol Sci. 1989;20(2):169–188. doi: 10.1016/0021-8502(89)90042-6 DOI

Kreyling WG, Holzwarth U, Haberl N, et al. Quantitative biokinetics of titanium dioxide nanoparticles after intratracheal instillation in rats: part 3. Nanotoxicology. 2017;11(4):454–464. doi: 10.1080/17435390.2017.1306894 PubMed DOI

IARC Working Group on the Evaluation of Carcinogenic Risks to Humans . Welding, molybdenum trioxide, and indium tin oxide. Lyon (FR): International Agency for Research on Cancer; 2018. PMID: 31268644. PubMed

Salemi R, Marconi A, Di Salvatore V, et al. Epigenetic alterations and occupational exposure to benzene, fibers, and heavy metals associated with tumor development. Mol Med Rep. 2017;15(5):3366–3371. doi: 10.3892/mmr.2017.6383 PubMed DOI

Tsapogas P, Mooney C, Brown G, et al. The cytokine Flt3-ligand in normal and malignant hematopoiesis. IJMS. 2017;18(6):1115. doi: 10.3390/ijms18061115 PubMed DOI PMC

Yamawaki K, Shiina I, Murata T, et al. FLT3-ITD transduces autonomous growth signals during its biosynthetic trafficking in acute myelogenous leukemia cells. Sci Rep. 2021;11(1):22678. doi: 10.1038/s41598-021-02221-2 PubMed DOI PMC

Lischkova L, Pelclova D, Hlusicka J, et al. Detection and identification of engineered nanoparticles in exhaled breath condensate, blood serum, and urine of occupationally exposed subjects. Monatsh Chem. 2019;150(3):511–523. doi: 10.1007/s00706-019-2379-z DOI

Ji H, Khurana Hershey GK. Genetic and epigenetic influence on the response to environmental particulate matter. J Allergy Clin Immunol. 2012;129(1):33–41. doi: 10.1016/j.jaci.2011.11.008 PubMed DOI PMC

Cao R, Wang K, Long M, et al. miR-3613-5p enhances the metastasis of pancreatic cancer by targeting CDK6. Cell Cycle. 2020;19(22):3086–3095. doi: 10.1080/15384101.2020.1831254 PubMed DOI PMC

He T, Shen H, Wang S, et al. MicroRNA-3613-5p promotes lung adenocarcinoma cell proliferation through a RELA and AKT/MAPK positive feedback loop. Mol Ther Nucleic Acids. 2020;22:572–583. doi: 10.1016/j.omtn.2020.09.024 PubMed DOI PMC

Ahmadi M, Najari-Hanjani P, Ghaffarnia R, et al. The hsa-miR-3613–5p, a potential oncogene correlated with diagnostic and prognostic merits in kidney renal clear cell carcinoma. Pathol Res Pract. 2023;251:154903. doi: 10.1016/j.prp.2023.154903 PubMed DOI

Walasik I, Klicka K, Grzywa TM, et al. Circulating miR-3613-5p but not miR-125b-5p, miR-199a-3p, and miR-451a are biomarkers of endometriosis. Reprod Biol. 2023;23(4):100796. doi: 10.1016/j.repbio.2023.100796 PubMed DOI

Koyama N, Ishikawa Y, Ohta H, et al. miR ‐4448/Girdin/Akt/AMPK axis inhibits EZH2 ‐mediated EMT and tumorigenesis in small‐cell lung cancer. Cancer Med. 2024;13(19):e70093. doi: 10.1002/cam4.70093 PubMed DOI PMC

Shoeb M, Kodali VK, Farris BY, et al. Oxidative stress, DNA methylation, and telomere length changes in peripheral blood mononuclear cells after pulmonary exposure to metal-rich welding nanoparticles. NanoImpact. 2017;5:61–69. doi: 10.1016/j.impact.2017.01.001 PubMed DOI PMC

Sima M, Rossnerova A, Simova Z, et al. The impact of air pollution exposure on the MicroRNA machinery and lung cancer development. JPM. 2021;11(1):60. doi: 10.3390/jpm11010060 PubMed DOI PMC

Guo L, Zhao Y, Yang S, et al. Integrative analysis of miRNA-mRNA and miRNA-miRNA interactions. Biomed Res Int. 2014;2014:1–8. doi: 10.1155/2014/907420 PubMed DOI PMC

Winckelmans E, Vrijens K, Tsamou M, et al. Newborn sex-specific transcriptome signatures and gestational exposure to fine particles: findings from the ENVIRONAGE birth cohort. Environ Health. 2017;16(1):52. doi: 10.1186/s12940-017-0264-y PubMed DOI PMC

Guo L, Zhang Q, Ma X, et al. miRNA and mRNA expression analysis reveals potential sex-biased miRNA expression. Sci Rep. 2017;7(1):39812. doi: 10.1038/srep39812. PubMed DOI PMC

Fuentes N, Roy A, Mishra V, et al. Sex-specific microRNA expression networks in an acute mouse model of ozone-induced lung inflammation. Biol Sex Differ. 2018;9(1):18. doi: 10.1186/s13293-018-0177-7 PubMed DOI PMC

Haghani A, Cacciottolo M, Doty KR, et al. Mouse brain transcriptome responses to inhaled nanoparticulate matter differed by sex and APOE in Nrf2-nfkb interactions. Elife. 2020;9:e54822. doi: 10.7554/eLife.54822 PubMed DOI PMC

Wardhani K, Yazzie S, McVeigh C, et al. Systemic immunological responses are dependent on sex and ovarian hormone presence following acute inhaled woodsmoke exposure. Part Fibre Toxicol. 2024;21(1):27. doi: 10.1186/s12989-024-00587-5 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...