Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers

. 2018 Sep 16 ; 8 (9) : . [epub] 20180916

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30223600

Grantová podpora
18-02079S Grantová Agentura České Republiky
Progres Q25 and Q29 Univerzita Karlova v Praze
43/17/RPZP Ministerstvo Zdravotnictví Ceské Republiky
P503/12/G147 Akademie Věd České Republiky

Thousands of researchers and workers worldwide are employed in nanocomposites manufacturing, yet little is known about their respiratory health. Aerosol exposures were characterized using real time and integrated instruments. Aerosol mass concentration ranged from 0.120 mg/m³ to 1.840 mg/m³ during nanocomposite machining processes; median particle number concentration ranged from 4.8 × 10⁴ to 5.4 × 10⁵ particles/cm³. The proportion of nanoparticles varied by process from 40 to 95%. Twenty employees, working in nanocomposite materials research were examined pre-shift and post-shift using spirometry and fractional exhaled nitric oxide (FeNO) in parallel with 21 controls. Pro-inflammatory leukotrienes (LT) type B4, C4, D4, and E4; tumor necrosis factor (TNF); interleukins; and anti-inflammatory lipoxins (LXA4 and LXB4) were analyzed in their exhaled breath condensate (EBC). Chronic bronchitis was present in 20% of researchers, but not in controls. A significant decrease in forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC) was found in researchers post-shift (p ˂ 0.05). Post-shift EBC samples were higher for TNF (p ˂ 0.001), LTB4 (p ˂ 0.001), and LTE4 (p ˂ 0.01) compared with controls. Nanocomposites production was associated with LTB4 (p ˂ 0.001), LTE4 (p ˂ 0.05), and TNF (p ˂ 0.001), in addition to pre-shift LTD4 and LXB4 (both p ˂ 0.05). Spirometry documented minor, but significant, post-shift lung impairment. TNF and LTB4 were the most robust markers of biological effects. Proper ventilation and respiratory protection are required during nanocomposites processing.

Zobrazit více v PubMed

Gomez V., Levin M., Saber A.T., Irusta S., Dal Maso M., Hanoi R., Santamaria J., Jensen K.A., Wallin H., Koponen I.K. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing. Ann. Occup. Hyg. 2014;58:983–994. doi: 10.1093/annhyg/meu046. PubMed DOI

Liou S.H., Tsai C.S., Pelclova D., Schubauer-Berigan M.K., Schulte P.A. Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanopart. Res. 2015;17:413. doi: 10.1007/s11051-015-3219-7. PubMed DOI PMC

Iavicoli I., Leso V., Schulte P.A. Biomarkers of susceptibility. State of the art and implications for occupational exposure to engineered nanomaterials. Toxicol. Appl. Pharmacol. 2016;299:112–124. doi: 10.1016/j.taap.2015.12.018. PubMed DOI PMC

Liou S.H., Wu W.T., Liao H.Y., Chen C.Y., Tsai C.Y., Jung W.T., Lee H.L. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J. Hazard. Mater. 2017;331:329–335. doi: 10.1016/j.jhazmat.2017.02.042. PubMed DOI

Guseva Canu I., Schulte P.A., Riediker M., Fatkhutdinova L., Bergamaschi E. Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J. Epidemiol. Community Health. 2018;72:148–153. doi: 10.1136/jech-2016-208668. PubMed DOI PMC

Bradna P., Ondrackova L., Zdimal V., Navratil T., Pelclova D. Detection of nanoparticles released at finishing of dental composite materials. Monatsh. Chem. 2017;148:531–537. doi: 10.1007/s00706-016-1912-6. DOI

Schulte P.A., Iavicoli I., Rantanen J.H., Dahmann D., Iavicoli S., Pipke R., Guseva Canu I., Boccuni F., Ricci M., Polci M.L., et al. Assessing the protection of the nanomaterial workforce. Nanotoxicology. 2016;10:1013–1019. doi: 10.3109/17435390.2015.1132347. PubMed DOI PMC

Kurjane N., Zvagule T., Reste J., Martinsone Z., Pavlovska I., Martinsone I., Vanadzins I. The effect of different workplace nanoparticles on the immune systems of employees. J. Nanopart. Res. 2017;19:320. doi: 10.1007/s11051-017-4004-6. PubMed DOI PMC

Liou S.H., Tsou T.C., Wang S.L., Li L.A., Chiang H.C., Li W.F., Lai H.Y., Lee H.L., Lin M.H., Hsu J.H., et al. Epidemiological study of health hazards among workers handling engineered nanomaterials. J. Nanopart. Res. 2012;14:878. doi: 10.1007/s11051-012-0878-5. DOI

Liao H.Y., Chung Y.T., Lai C.H., Wang S.L., Chiang H.C., Li L.A., Tsou T.C., Li W.F., Lee H.L., Wu W.T., Lin M.H., et al. Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials. Nanotoxicology. 2014;8(Suppl. 1):100–110. doi: 10.3109/17435390.2013.858793. PubMed DOI

Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Komarc M., Navratil T., Schwarz J., Zikova N., Makes O., et al. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO2 nanoparticles. J. Breath Res. 2016;10:036004. doi: 10.1088/1752-7155/10/3/036004. PubMed DOI

Lee J.S., Choi Y.C., Shin J.H., Lee J.H., Lee Y., Park S.Y., Baek J.E., Park J.D., Ahn K., Yu I.J. Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicology. 2015;9:802–811. doi: 10.3109/17435390.2014.978404. PubMed DOI

Pelclova D., Zdimal V., Fenclova Z., Vlckova S., Turci F., Corazzari I., Kacer P., Schwarz J., Zikova N., Makes O., et al. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med. 2016;73:110–118. doi: 10.1136/oemed-2015-103161. PubMed DOI

Pelclova D., Zdimal V., Kacer P., Zikova N., Komarc M., Fenclova Z., Vlckova S., Schwarz J., Makes O., Syslova K., et al. Markers of lipid oxidative damage in the exhaled breath condensate of nanoTiO2 production workers. Nanotoxicology. 2017;11:52–63. doi: 10.1080/17435390.2016.1262921. PubMed DOI

Zhao L., Zhu Y., Chen Z., Xu H., Zhou J., Tang S., Xu Z., Kong F., Li X., Zhang Y., et al. Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology. 2018;12:169–184. doi: 10.1080/17435390.2018.1425502. PubMed DOI

Bai Y., Bové H., Nawrot T.S., Nemery B. Carbon load in airway macrophages as a biomarker of exposure to particulate air pollution; a longitudinal study of an international Panel. Part. Fibre Toxicol. 2018;15:14. doi: 10.1186/s12989-018-0250-8. PubMed DOI PMC

Forest V., Vergnon J.M., Guibert C., Bitounis D., Leclerc L., Sarry G., Pourchez J. Metal load assessment in patient pulmonary lavages: Towards a comprehensive mineralogical analysis including the nano-sized fraction. Nanotoxicology. 2017;11:1211–1224. doi: 10.1080/17435390.2017.1406170. PubMed DOI

Horváth I., Barnes P.J., Loukides S., Sterk P.J., Högman M., Olin A.C., Amann A., Antus B., Baraldi E., Bikov A., et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017;49:1600965. doi: 10.1183/13993003.00965-2016. PubMed DOI

Peters-Golden M. Expanding roles for leukotrienes in airway inflammation. Curr. Allergy Asthma Rep. 2008;8:367–373. doi: 10.1007/s11882-008-0057-z. PubMed DOI

Pelclova D., Fenclova Z., Kacer P., Kuzma M., Navratil T., Lebedova J. 8-isoprostane and leukotrienes in exhaled breath condensate in Czech subjects with silicosis. Ind. Health. 2007;45:766–774. doi: 10.2486/indhealth.45.766. PubMed DOI

Pelclova D., Fenclova Z., Kacer P., Kuzma M., Navratil T., Lebedova J. 2008 Increased 8-isoprostane, a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure. Ind. Health. 2008;46:484–489. doi: 10.2486/indhealth.46.484. PubMed DOI

Beck-Speier I., Karg E., Behrendt H., Stoeger T., Alessandrini F. Ultrafine particles affect the balance of endogenous pro- and anti-inflammatory lipid mediators in the lung: In-vitro and in-vivo studies. Part. Fibre Toxicol. 2012;9:27. doi: 10.1186/1743-8977-9-27. PubMed DOI PMC

Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Syslova K., Navratil T., Schwarz J., Zikova N., Barosova H., et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J. Breath Res. 2016;10:016004. doi: 10.1088/1752-7155/10/1/016004. PubMed DOI

Pelclova D., Zdimal V., Schwarz J., Dvorackova S., Komarc M., Ondracek J., Kostejn M., Kacer P., Vlckova S., Fenclova Z., et al. Markers of oxidative stress in the exhaled breath condensate of workers handling nanocomposites. Nanomaterials. 2018;8:611. doi: 10.3390/nano8080611. PubMed DOI PMC

Duvall M.G., Bruggemann T.R., Levy B.D. Bronchoprotective mechanisms for specialized pro-resolving mediators in the resolution of lung inflammation. Mol. Aspects Med. 2017;58:44–56. doi: 10.1016/j.mam.2017.04.003. PubMed DOI PMC

Stefancova L., Schwarz J., Mäkelä T., Hillamo R., Smolik J. Comprehensive characterization of original 10-stage and 7-stage modified Berner type impactors. Aerosol Sci. Technol. 2011;45:88–100. doi: 10.1080/02786826.2010.524266. DOI

Dweik R.A., Boggs P.B., Erzurum S.C., Archer S., Fagan K., Hassoun P.M., Hill N.S., Humbert M., Kawut S.M., Krowka M., et al. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011;184:602–615. doi: 10.1164/rccm.9120-11ST. PubMed DOI PMC

Neprasova M., Maixnerova D., Novak J., Reily C., Julian B.A., Boron J., Novotny P., Suchanek M., Tesar V., Kacer P. Toward noninvasive diagnosis of IgA nephropathy: A pilot urinary metabolomic and proteomic study. Dis. Mark. 2016;2016:3650909. doi: 10.1155/2016/3650909. PubMed DOI PMC

Schlosser G., Kacer P., Kuzma M., Szilágyi Z., Sorrentino A., Manzo C., Pizzano R., Malorni L., Pocsfalvi G. Coupling immunomagnetic separation on magnetic beads with matrix-assisted laser desorption ionization-time of flight mass spectrometry for detection of staphylococcal enterotoxin B. Appl. Environ. Microbiol. 2007;73:6945–6952. doi: 10.1128/AEM.01136-07. PubMed DOI PMC

Klusackova P., Lebedova J., Kacer P., Kuzma M., Brabec M., Pelclova D., Fenclova Z., Navratil T. Leukotrienes and 8-isoprostane in exhaled breath condensate in bronchoprovocation tests with occupational allergens. Prostaglandins Leuk. Essent. Fat. Acids. 2008;78:281–292. doi: 10.1016/j.plefa.2008.03.006. PubMed DOI

Ahmad I., Khan M.I., Patil G., Chauhan L.K. Evaluation of cytotoxic, genotoxic and inflammatory responses of micro- and nano-particles of granite on human lung fibroblast cell IMR-90. Toxicol. Lett. 2012;208:300–307. doi: 10.1016/j.toxlet.2011.11.004. PubMed DOI

Bello D., Wardle B.L., Zhang J., Yamamoto N., Santeufemio C., Hallock M., Virji M.A. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int. J. Occup. Environ. Health. 2010;16:434–450. doi: 10.1179/oeh.2010.16.4.434. PubMed DOI

Boonruksa P., Bello D., Zhang J., Isaacs J.A., Mead J.L., Woskie S.R. Exposures to nanoparticles and fibers during injection molding and recycling of carbon nanotube reinforced polycarbonate composites. J. Expo. Sci. Environ. Epidemiol. 2017;27:379–390. doi: 10.1038/jes.2016.26. PubMed DOI

Pelclova D., Barosova H., Kukutschova J., Zdimal V., Navratil T., Fenclova Z., Vlckova S., Schwarz J., Zikova N., Kacer P., et al. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nanoTiO2 particles: A cross-sectional study. J. Breath Res. 2015;9:036008. doi: 10.1088/1752-7155/9/3/036008. PubMed DOI

Chandrasekharan J.A., Sharma-Walia N. Lipoxins: Nature’s way to resolve inflammation. J. Inflamm. Res. 2015;8:181–192. doi: 10.2147/JIR.S9. PubMed DOI PMC

Barnes P.J. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2018;18:454–466. doi: 10.1038/s41577-018-0006-6. PubMed DOI

Elajami T.K., Colas R.A., Dalli J., Chiang N., Serhan C.N., Welty F.K. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. FASEB J. 2016;30:2792–27801. doi: 10.1096/fj.201500155R. PubMed DOI PMC

Khatri M., Bello D., Gaines P., Martin J., Pal A.K., Gore R., Woskie S. Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers. Nanotoxicology. 2013;7:1014–1027. doi: 10.3109/17435390.2012.691998. PubMed DOI

Khatri M., Bello D., Martin J., Bello A., Gore R., Demokritou P., Gaines P. Chronic upper airway inflammation and oxidative stress in photocopier operators: Mechanistic insights. NanoImpact. 2017;5:133–145. doi: 10.1016/j.impact.2017.01.007. DOI

Glass D.C., Mazhar M., Xiang S., Dean P., Simpson P., Priestly B., Plebanski M., Abramson M., Sim M.R., Dennekamp M. Immunological effects among workers who handle engineered nanoparticles. Occup. Environ. Med. 2017;74:868–876. doi: 10.1136/oemed-2016-104111. PubMed DOI

Rossi E.M., Pylkkänen L., Koivisto A.J., Dean P., Simpson P., Priestly B., Plebanski M., Abramson M., Sim M.R., Dennekamp M. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part. Fibre Toxicol. 2010;7:35. doi: 10.1186/1743-8977-7-35. PubMed DOI PMC

Jacinto T., Malinovschi A., Janson C., Fonseca J., Alving K. Differential effect of cigarette smoke exposure on exhaled nitric oxide and blood eosinophils in healthy and asthmatic individuals. J. Breath Res. 2017;11:036006. doi: 10.1088/1752-7163/aa746b. PubMed DOI

Zhang R., Dai Y., Zhang X., Niu Y., Meng T., Li Y., Duan H., Bin P., Ye M., Jia X., et al. Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Part. Fibre Toxicol. 2014;11:73. doi: 10.1186/s12989-014-0073-1. PubMed DOI PMC

Pelclova D., Fenclova Z., Syslova K., Vlckova S., Lebedova J., Pecha O., Belacek J., Navratil T., Kuzma M., Kacer P. Oxidative stress markers in exhaled breath condensate in lung fibroses are not significantly affected by systemic diseases. Ind. Health. 2011;49:746–754. doi: 10.2486/indhealth.MS1237. PubMed DOI

Pirela S.V., Martin J., Bello D., Demokritou P. Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: State of science and future research needs. Crit. Rev. Toxicol. 2017;47:683–709. doi: 10.1080/10408444.2017.1318354. PubMed DOI PMC

Pelclova D., Zdimal V., Kacer P., Komarc M., Fenclova Z., Vlckova S., Zikova N., Schwarz J., Makes O., Navratil T., et al. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Rev. Environ. Health. 2017;32:193–200. doi: 10.1515/reveh-2016-0030. PubMed DOI

Pelclova D., Zdimal V., Kacer P., Vlckova S., Fenclova Z., Navratil T., Komarc M., Schwarz J., Zikova N., Makes O., et al. Markers of nucleic acids and proteins oxidation among office workers exposed to air pollutants including (nano)TiO2 particles. Neuro Endocrinol. Lett. 2016;37(Suppl. 1):13–16. PubMed

Rossnerova A., Pokorna M., Svecova V., Sram R.J., Topinka J., Zölzer F., Rossner P., Jr. Adaptation of the human population to the environment: Current knowledge, clues from Czech cytogenetic and “omics” biomonitoring studies and possible mechanisms. Mutat. Res. 2017;773:188–203. doi: 10.1016/j.mrrev.2017.07.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...