Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-02079S
Grantová Agentura České Republiky
Progres Q25 and Q29
Univerzita Karlova v Praze
43/17/RPZP
Ministerstvo Zdravotnictví Ceské Republiky
P503/12/G147
Akademie Věd České Republiky
PubMed
30223600
PubMed Central
PMC6164906
DOI
10.3390/nano8090731
PII: nano8090731
Knihovny.cz E-zdroje
- Klíčová slova
- FeNO, exhaled breath condensate (EBC), inflammation, nanocomposites, nanoparticles, spirometry,
- Publikační typ
- časopisecké články MeSH
Thousands of researchers and workers worldwide are employed in nanocomposites manufacturing, yet little is known about their respiratory health. Aerosol exposures were characterized using real time and integrated instruments. Aerosol mass concentration ranged from 0.120 mg/m³ to 1.840 mg/m³ during nanocomposite machining processes; median particle number concentration ranged from 4.8 × 10⁴ to 5.4 × 10⁵ particles/cm³. The proportion of nanoparticles varied by process from 40 to 95%. Twenty employees, working in nanocomposite materials research were examined pre-shift and post-shift using spirometry and fractional exhaled nitric oxide (FeNO) in parallel with 21 controls. Pro-inflammatory leukotrienes (LT) type B4, C4, D4, and E4; tumor necrosis factor (TNF); interleukins; and anti-inflammatory lipoxins (LXA4 and LXB4) were analyzed in their exhaled breath condensate (EBC). Chronic bronchitis was present in 20% of researchers, but not in controls. A significant decrease in forced expiratory volume in 1 s (FEV1) and FEV1/forced vital capacity (FVC) was found in researchers post-shift (p ˂ 0.05). Post-shift EBC samples were higher for TNF (p ˂ 0.001), LTB4 (p ˂ 0.001), and LTE4 (p ˂ 0.01) compared with controls. Nanocomposites production was associated with LTB4 (p ˂ 0.001), LTE4 (p ˂ 0.05), and TNF (p ˂ 0.001), in addition to pre-shift LTD4 and LXB4 (both p ˂ 0.05). Spirometry documented minor, but significant, post-shift lung impairment. TNF and LTB4 were the most robust markers of biological effects. Proper ventilation and respiratory protection are required during nanocomposites processing.
Biocev 1st Faculty of Medicine Charles University Prumyslova 595 252 50 Vestec Czech Republic
Institute of Chemical Process Fundamentals of the CAS Rozvojova 1 135 165 02 Prague Czech Republic
Zobrazit více v PubMed
Gomez V., Levin M., Saber A.T., Irusta S., Dal Maso M., Hanoi R., Santamaria J., Jensen K.A., Wallin H., Koponen I.K. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing. Ann. Occup. Hyg. 2014;58:983–994. doi: 10.1093/annhyg/meu046. PubMed DOI
Liou S.H., Tsai C.S., Pelclova D., Schubauer-Berigan M.K., Schulte P.A. Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanopart. Res. 2015;17:413. doi: 10.1007/s11051-015-3219-7. PubMed DOI PMC
Iavicoli I., Leso V., Schulte P.A. Biomarkers of susceptibility. State of the art and implications for occupational exposure to engineered nanomaterials. Toxicol. Appl. Pharmacol. 2016;299:112–124. doi: 10.1016/j.taap.2015.12.018. PubMed DOI PMC
Liou S.H., Wu W.T., Liao H.Y., Chen C.Y., Tsai C.Y., Jung W.T., Lee H.L. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J. Hazard. Mater. 2017;331:329–335. doi: 10.1016/j.jhazmat.2017.02.042. PubMed DOI
Guseva Canu I., Schulte P.A., Riediker M., Fatkhutdinova L., Bergamaschi E. Methodological, political and legal issues in the assessment of the effects of nanotechnology on human health. J. Epidemiol. Community Health. 2018;72:148–153. doi: 10.1136/jech-2016-208668. PubMed DOI PMC
Bradna P., Ondrackova L., Zdimal V., Navratil T., Pelclova D. Detection of nanoparticles released at finishing of dental composite materials. Monatsh. Chem. 2017;148:531–537. doi: 10.1007/s00706-016-1912-6. DOI
Schulte P.A., Iavicoli I., Rantanen J.H., Dahmann D., Iavicoli S., Pipke R., Guseva Canu I., Boccuni F., Ricci M., Polci M.L., et al. Assessing the protection of the nanomaterial workforce. Nanotoxicology. 2016;10:1013–1019. doi: 10.3109/17435390.2015.1132347. PubMed DOI PMC
Kurjane N., Zvagule T., Reste J., Martinsone Z., Pavlovska I., Martinsone I., Vanadzins I. The effect of different workplace nanoparticles on the immune systems of employees. J. Nanopart. Res. 2017;19:320. doi: 10.1007/s11051-017-4004-6. PubMed DOI PMC
Liou S.H., Tsou T.C., Wang S.L., Li L.A., Chiang H.C., Li W.F., Lai H.Y., Lee H.L., Lin M.H., Hsu J.H., et al. Epidemiological study of health hazards among workers handling engineered nanomaterials. J. Nanopart. Res. 2012;14:878. doi: 10.1007/s11051-012-0878-5. DOI
Liao H.Y., Chung Y.T., Lai C.H., Wang S.L., Chiang H.C., Li L.A., Tsou T.C., Li W.F., Lee H.L., Wu W.T., Lin M.H., et al. Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials. Nanotoxicology. 2014;8(Suppl. 1):100–110. doi: 10.3109/17435390.2013.858793. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Komarc M., Navratil T., Schwarz J., Zikova N., Makes O., et al. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO2 nanoparticles. J. Breath Res. 2016;10:036004. doi: 10.1088/1752-7155/10/3/036004. PubMed DOI
Lee J.S., Choi Y.C., Shin J.H., Lee J.H., Lee Y., Park S.Y., Baek J.E., Park J.D., Ahn K., Yu I.J. Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicology. 2015;9:802–811. doi: 10.3109/17435390.2014.978404. PubMed DOI
Pelclova D., Zdimal V., Fenclova Z., Vlckova S., Turci F., Corazzari I., Kacer P., Schwarz J., Zikova N., Makes O., et al. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med. 2016;73:110–118. doi: 10.1136/oemed-2015-103161. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Zikova N., Komarc M., Fenclova Z., Vlckova S., Schwarz J., Makes O., Syslova K., et al. Markers of lipid oxidative damage in the exhaled breath condensate of nanoTiO2 production workers. Nanotoxicology. 2017;11:52–63. doi: 10.1080/17435390.2016.1262921. PubMed DOI
Zhao L., Zhu Y., Chen Z., Xu H., Zhou J., Tang S., Xu Z., Kong F., Li X., Zhang Y., et al. Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology. 2018;12:169–184. doi: 10.1080/17435390.2018.1425502. PubMed DOI
Bai Y., Bové H., Nawrot T.S., Nemery B. Carbon load in airway macrophages as a biomarker of exposure to particulate air pollution; a longitudinal study of an international Panel. Part. Fibre Toxicol. 2018;15:14. doi: 10.1186/s12989-018-0250-8. PubMed DOI PMC
Forest V., Vergnon J.M., Guibert C., Bitounis D., Leclerc L., Sarry G., Pourchez J. Metal load assessment in patient pulmonary lavages: Towards a comprehensive mineralogical analysis including the nano-sized fraction. Nanotoxicology. 2017;11:1211–1224. doi: 10.1080/17435390.2017.1406170. PubMed DOI
Horváth I., Barnes P.J., Loukides S., Sterk P.J., Högman M., Olin A.C., Amann A., Antus B., Baraldi E., Bikov A., et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017;49:1600965. doi: 10.1183/13993003.00965-2016. PubMed DOI
Peters-Golden M. Expanding roles for leukotrienes in airway inflammation. Curr. Allergy Asthma Rep. 2008;8:367–373. doi: 10.1007/s11882-008-0057-z. PubMed DOI
Pelclova D., Fenclova Z., Kacer P., Kuzma M., Navratil T., Lebedova J. 8-isoprostane and leukotrienes in exhaled breath condensate in Czech subjects with silicosis. Ind. Health. 2007;45:766–774. doi: 10.2486/indhealth.45.766. PubMed DOI
Pelclova D., Fenclova Z., Kacer P., Kuzma M., Navratil T., Lebedova J. 2008 Increased 8-isoprostane, a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure. Ind. Health. 2008;46:484–489. doi: 10.2486/indhealth.46.484. PubMed DOI
Beck-Speier I., Karg E., Behrendt H., Stoeger T., Alessandrini F. Ultrafine particles affect the balance of endogenous pro- and anti-inflammatory lipid mediators in the lung: In-vitro and in-vivo studies. Part. Fibre Toxicol. 2012;9:27. doi: 10.1186/1743-8977-9-27. PubMed DOI PMC
Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Syslova K., Navratil T., Schwarz J., Zikova N., Barosova H., et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J. Breath Res. 2016;10:016004. doi: 10.1088/1752-7155/10/1/016004. PubMed DOI
Pelclova D., Zdimal V., Schwarz J., Dvorackova S., Komarc M., Ondracek J., Kostejn M., Kacer P., Vlckova S., Fenclova Z., et al. Markers of oxidative stress in the exhaled breath condensate of workers handling nanocomposites. Nanomaterials. 2018;8:611. doi: 10.3390/nano8080611. PubMed DOI PMC
Duvall M.G., Bruggemann T.R., Levy B.D. Bronchoprotective mechanisms for specialized pro-resolving mediators in the resolution of lung inflammation. Mol. Aspects Med. 2017;58:44–56. doi: 10.1016/j.mam.2017.04.003. PubMed DOI PMC
Stefancova L., Schwarz J., Mäkelä T., Hillamo R., Smolik J. Comprehensive characterization of original 10-stage and 7-stage modified Berner type impactors. Aerosol Sci. Technol. 2011;45:88–100. doi: 10.1080/02786826.2010.524266. DOI
Dweik R.A., Boggs P.B., Erzurum S.C., Archer S., Fagan K., Hassoun P.M., Hill N.S., Humbert M., Kawut S.M., Krowka M., et al. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011;184:602–615. doi: 10.1164/rccm.9120-11ST. PubMed DOI PMC
Neprasova M., Maixnerova D., Novak J., Reily C., Julian B.A., Boron J., Novotny P., Suchanek M., Tesar V., Kacer P. Toward noninvasive diagnosis of IgA nephropathy: A pilot urinary metabolomic and proteomic study. Dis. Mark. 2016;2016:3650909. doi: 10.1155/2016/3650909. PubMed DOI PMC
Schlosser G., Kacer P., Kuzma M., Szilágyi Z., Sorrentino A., Manzo C., Pizzano R., Malorni L., Pocsfalvi G. Coupling immunomagnetic separation on magnetic beads with matrix-assisted laser desorption ionization-time of flight mass spectrometry for detection of staphylococcal enterotoxin B. Appl. Environ. Microbiol. 2007;73:6945–6952. doi: 10.1128/AEM.01136-07. PubMed DOI PMC
Klusackova P., Lebedova J., Kacer P., Kuzma M., Brabec M., Pelclova D., Fenclova Z., Navratil T. Leukotrienes and 8-isoprostane in exhaled breath condensate in bronchoprovocation tests with occupational allergens. Prostaglandins Leuk. Essent. Fat. Acids. 2008;78:281–292. doi: 10.1016/j.plefa.2008.03.006. PubMed DOI
Ahmad I., Khan M.I., Patil G., Chauhan L.K. Evaluation of cytotoxic, genotoxic and inflammatory responses of micro- and nano-particles of granite on human lung fibroblast cell IMR-90. Toxicol. Lett. 2012;208:300–307. doi: 10.1016/j.toxlet.2011.11.004. PubMed DOI
Bello D., Wardle B.L., Zhang J., Yamamoto N., Santeufemio C., Hallock M., Virji M.A. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Int. J. Occup. Environ. Health. 2010;16:434–450. doi: 10.1179/oeh.2010.16.4.434. PubMed DOI
Boonruksa P., Bello D., Zhang J., Isaacs J.A., Mead J.L., Woskie S.R. Exposures to nanoparticles and fibers during injection molding and recycling of carbon nanotube reinforced polycarbonate composites. J. Expo. Sci. Environ. Epidemiol. 2017;27:379–390. doi: 10.1038/jes.2016.26. PubMed DOI
Pelclova D., Barosova H., Kukutschova J., Zdimal V., Navratil T., Fenclova Z., Vlckova S., Schwarz J., Zikova N., Kacer P., et al. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nanoTiO2 particles: A cross-sectional study. J. Breath Res. 2015;9:036008. doi: 10.1088/1752-7155/9/3/036008. PubMed DOI
Chandrasekharan J.A., Sharma-Walia N. Lipoxins: Nature’s way to resolve inflammation. J. Inflamm. Res. 2015;8:181–192. doi: 10.2147/JIR.S9. PubMed DOI PMC
Barnes P.J. Targeting cytokines to treat asthma and chronic obstructive pulmonary disease. Nat. Rev. Immunol. 2018;18:454–466. doi: 10.1038/s41577-018-0006-6. PubMed DOI
Elajami T.K., Colas R.A., Dalli J., Chiang N., Serhan C.N., Welty F.K. Specialized proresolving lipid mediators in patients with coronary artery disease and their potential for clot remodeling. FASEB J. 2016;30:2792–27801. doi: 10.1096/fj.201500155R. PubMed DOI PMC
Khatri M., Bello D., Gaines P., Martin J., Pal A.K., Gore R., Woskie S. Nanoparticles from photocopiers induce oxidative stress and upper respiratory tract inflammation in healthy volunteers. Nanotoxicology. 2013;7:1014–1027. doi: 10.3109/17435390.2012.691998. PubMed DOI
Khatri M., Bello D., Martin J., Bello A., Gore R., Demokritou P., Gaines P. Chronic upper airway inflammation and oxidative stress in photocopier operators: Mechanistic insights. NanoImpact. 2017;5:133–145. doi: 10.1016/j.impact.2017.01.007. DOI
Glass D.C., Mazhar M., Xiang S., Dean P., Simpson P., Priestly B., Plebanski M., Abramson M., Sim M.R., Dennekamp M. Immunological effects among workers who handle engineered nanoparticles. Occup. Environ. Med. 2017;74:868–876. doi: 10.1136/oemed-2016-104111. PubMed DOI
Rossi E.M., Pylkkänen L., Koivisto A.J., Dean P., Simpson P., Priestly B., Plebanski M., Abramson M., Sim M.R., Dennekamp M. Inhalation exposure to nanosized and fine TiO2 particles inhibits features of allergic asthma in a murine model. Part. Fibre Toxicol. 2010;7:35. doi: 10.1186/1743-8977-7-35. PubMed DOI PMC
Jacinto T., Malinovschi A., Janson C., Fonseca J., Alving K. Differential effect of cigarette smoke exposure on exhaled nitric oxide and blood eosinophils in healthy and asthmatic individuals. J. Breath Res. 2017;11:036006. doi: 10.1088/1752-7163/aa746b. PubMed DOI
Zhang R., Dai Y., Zhang X., Niu Y., Meng T., Li Y., Duan H., Bin P., Ye M., Jia X., et al. Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Part. Fibre Toxicol. 2014;11:73. doi: 10.1186/s12989-014-0073-1. PubMed DOI PMC
Pelclova D., Fenclova Z., Syslova K., Vlckova S., Lebedova J., Pecha O., Belacek J., Navratil T., Kuzma M., Kacer P. Oxidative stress markers in exhaled breath condensate in lung fibroses are not significantly affected by systemic diseases. Ind. Health. 2011;49:746–754. doi: 10.2486/indhealth.MS1237. PubMed DOI
Pirela S.V., Martin J., Bello D., Demokritou P. Nanoparticle exposures from nano-enabled toner-based printing equipment and human health: State of science and future research needs. Crit. Rev. Toxicol. 2017;47:683–709. doi: 10.1080/10408444.2017.1318354. PubMed DOI PMC
Pelclova D., Zdimal V., Kacer P., Komarc M., Fenclova Z., Vlckova S., Zikova N., Schwarz J., Makes O., Navratil T., et al. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Rev. Environ. Health. 2017;32:193–200. doi: 10.1515/reveh-2016-0030. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Vlckova S., Fenclova Z., Navratil T., Komarc M., Schwarz J., Zikova N., Makes O., et al. Markers of nucleic acids and proteins oxidation among office workers exposed to air pollutants including (nano)TiO2 particles. Neuro Endocrinol. Lett. 2016;37(Suppl. 1):13–16. PubMed
Rossnerova A., Pokorna M., Svecova V., Sram R.J., Topinka J., Zölzer F., Rossner P., Jr. Adaptation of the human population to the environment: Current knowledge, clues from Czech cytogenetic and “omics” biomonitoring studies and possible mechanisms. Mutat. Res. 2017;773:188–203. doi: 10.1016/j.mrrev.2017.07.002. PubMed DOI
Are there Risks from Nanocomposite Restoration Grinding for Dentists?
DNA Methylation Profiles in a Group of Workers Occupationally Exposed to Nanoparticles