NanoTiO2 Sunscreen Does Not Prevent Systemic Oxidative Stress Caused by UV Radiation and a Minor Amount of NanoTiO2 is Absorbed in Humans
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Progres Q25 and Q 29
Univerzita Karlova v Praze
18-2079S
Grantová Agentura České Republiky
PubMed
31212919
PubMed Central
PMC6631994
DOI
10.3390/nano9060888
PII: nano9060888
Knihovny.cz E-zdroje
- Klíčová slova
- UV irradiation, exhaled breath condensate (EBC), inflammation, nanoTiO2, nanoparticles absorption, nanotoxicology, oxidative stress, plasma, scanning electron microscopy (SEM), sunscreen, transmission electron microscopy (TEM), urine,
- Publikační typ
- časopisecké články MeSH
The present pilot study tested the efficiency of nanoTiO2 sunscreen to prevent the oxidative stress/inflammation caused by ultraviolet (UV) radiation using biomarkers in subjects' blood, urine, and exhaled breath condensate (EBC). In addition, the skin absorption of nanoTiO2 was studied. Six identical subjects participated in three tests: (A) nanoTiO2 sunscreen, (B) UV radiation, and (C) sunscreen + UV. The first samples were collected before the test and the second after sunscreen application and/or UV exposure. On day 4, the third samples were collected, and the sunscreen was washed off, and the fourth samples were collected on day 11. The following biomarkers were measured: malondialdehyde, 4-hydroxy-trans-hexenal, 4-hydroxy-trans-nonenal, aldehydes C6-C12, 8-iso-Prostaglandin F2α, o-tyrosine, 3-chlorotyrosine, 3-nitrotyrosine, 8-hydroxy-2-deoxyguanosine, 8-hydroxyguanosine, 5-hydroxymethyl uracil, and leukotrienes, using liquid chromatography-electrospray ionisation-tandem mass spectrometry. Titania was measured using inductively coupled plasma mass spectrometry and TiO2 nanoparticles by transmission and scanning electron microscopy. Sunscreen alone did not elevate the markers, but UV increased the biomarkers in the plasma, urine, and EBC. The sunscreen prevented skin redness, however it did not inhibit the elevation of oxidative stress/inflammatory markers. Titania and nanoTiO2 particles were found in the plasma and urine (but not in the EBC) in all sunscreen users, suggesting their skin absorption.
Czech University of Life Sciences Kamycka 129 165 00 Prague 6 Czech Republic
Department of Chemistry University College London 20 Gordon Street London WC1H 0AJ UK
Faculty of Science Charles University Prague Vinicna 5 128 43 Prague 2 Czech Republic
Zobrazit více v PubMed
Olsen C.M., Wilson L.F., Green A.C., Bain C.J., Fritschi L., Neale R.E., Whiteman D.C. Cancers in Australia attributable to exposure to solar ultraviolet radiation and prevented by regular sunscreen use. Aust. N. Z. J. Public Health. 2015;39:471–476. doi: 10.1111/1753-6405.12470. PubMed DOI PMC
McSweeney P.C. The safety of nanoparticles in sunscreens: An update for general practice. Aust. Fam. Physician. 2016;45:397–399. PubMed
Westerdahl J., Ingvar C., Mâsbäck A., Olsson H. Sunscreen use and malignant melanoma. Int. J. Cancer. 2000;871:45–50. doi: 10.1002/1097-0215(20000701)87:1<145::AID-IJC22>3.0.CO;2-3. PubMed DOI
Vainio H., Bianchini F. Cancer-preventive effects of sunscreens are uncertain. Scand. J. Work Environ. Health. 2000;26:529–531. doi: 10.5271/sjweh.578. PubMed DOI
Eide M.J., Weinstock M.A. Public health challenges in sun protection. Dermatol. Clin. 2006;24:119–124. doi: 10.1016/j.det.2005.08.007. PubMed DOI
Grande F., Tucci P. Titanium Dioxide Nanoparticles: A Risk for Human Health? Mini Rev. Med. Chem. 2016;16:762–769. doi: 10.2174/1389557516666160321114341. PubMed DOI
Shi H., Magaye R., Castranova V., Zhao J. Titanium dioxide nanoparticles: A review of current toxicological data. Part. Fibre Toxicol. 2013;10:15. doi: 10.1186/1743-8977-10-15. PubMed DOI PMC
Turci F., Peira E., Corazzari I., Fenoglio I., Trotta M., Fubini B. Crystalline phase modulates the potency of nanometric TiO2 to adhere to and perturb the stratum corneum of porcine skin under indoor light. Chem. Res. Toxicol. 2013;26:1579–1590. doi: 10.1021/tx400285j. PubMed DOI
Bianco C., Kezic S., Crosera M., Svetličić V., Šegota S., Maina G., Romano C., Larese F., Adami G. In vitro percutaneous penetration and characterization of silver from silver-containing textiles. Int. J. Nanomed. 2015;10:1899–1908. doi: 10.2147/IJN.S78345. PubMed DOI PMC
Agents Classified by the IARC Monographs, Volumes 1–123. [(accessed on 15 January 2019)]; Available online: https://monographs.iarc.fr/wp-content/uploads/2018/09/ClassificationsAlphaOrder.pdf.
Tran D.T., Salmon R. Potential photocarcinogenic effects of nanoparticle sunscreens. Australas. J. Dermatol. 2011;52:1–6. doi: 10.1111/j.1440-0960.2010.00677.x. PubMed DOI
Biniek K., Levi K., Dauskardt R.H. Solar UV radiation reduces the barrier function of human skin. Proc. Natl. Acad. Sci. USA. 2012;109:17111–17116. doi: 10.1073/pnas.1206851109. PubMed DOI PMC
Mohania D., Chandel S., Kumar P., Verma V., Digvijay K., Tripathi D., Choudhury K., Mitten S.K., Shah D. Ultraviolet Radiations: Skin Defense-Damage Mechanism. Adv. Exp. Med. Biol. 2017;996:71–87. doi: 10.1007/978-3-319-56017-5_7. PubMed DOI
Barnard I.R.M., Tierney P., Campbell C.L., McMillan L., Moseley H., Eadie E., Brown C.T.A., Wood K. Quantifying Direct DNA Damage in the Basal Layer of Skin Exposed to UV Radiation from Sunbeds. Photochem. Photobiol. 2018;94:1017–1025. doi: 10.1111/php.12935. PubMed DOI
Gęgotek A., Ambrożewicz E., Jastrząb A., Jarocka-Karpowicz I., Skrzydlewska E. Rutin and ascorbic acid cooperation in antioxidant and antiapoptotic effect on human skin keratinocytes and fibroblasts exposed to UVA and UVB radiation. Arch. Dermatol. Res. 2019;311:203–219. doi: 10.1007/s00403-019-01898-w. PubMed DOI
Schneider L.A., Bloch W., Kopp K., Hainzl A., Rettberg P., Wlaschek M., Horneck G., Scharffetter-Kochanek K. 8-Isoprostane is a dose-related biomarker for photo-oxidative ultraviolet (UV) B damage in vivo: A pilot study with personal UV dosimetry. Br. J. Dermatol. 2006;154:1147–1154. doi: 10.1111/j.1365-2133.2006.07192.x. PubMed DOI
Bradna P., Ondrackova L., Zdimal V., Navratil T., Pelclova D. Detection of nanoparticles released at finishing of dental composite materials. Monatsh. Chem. 2017;148:531–537. doi: 10.1007/s00706-016-1912-6. DOI
Naess E.M., Hofgaard A., Skaug V., Gulbrandsen M., Danielsen T.E., Grahnstedt S., Skogstad A., Holm J.Ø. Titanium dioxide nanoparticles in sunscreen penetrate the skin into viable layers of the epidermis: A clinical approach. Photodermatol. Photoimmunol. Photomed. 2016;32:48–51. doi: 10.1111/phpp.12217. PubMed DOI
Trouiller B., Reliene R., Westbrook A., Solaimani P., Schiestl R.H. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo in mice. Cancer Res. 2009;69:8784–8789. doi: 10.1158/0008-5472.CAN-09-2496. PubMed DOI PMC
Hou J., Wang L., Wang C., Zhang S., Liu H., Li S., Wang X. Toxicity and mechanisms of action of titanium dioxide nanoparticles in living organisms. J. Environ. Sci. 2019;75:40–53. doi: 10.1016/j.jes.2018.06.010. PubMed DOI
IARC Vol. 93/2010. [(accessed on 27 April 2019)]; Available online: https://monographs.iarc.fr/list-of-classifications-volumes/
Moriyama A., Yamada I., Takahashi J., Iwahashi H. Oxidative stress caused by TiO2 nanoparticles under UV irradiation is due to UV irradiation not through nanoparticles. Chem. Biol. Interact. 2018;294:144–150. doi: 10.1016/j.cbi.2018.08.017. PubMed DOI
Gulson B., McCall M.J., Bowman D.M., Pinheiro T. A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch. Toxicol. 2015;89:1909–1930. doi: 10.1007/s00204-015-1564-z. PubMed DOI
Australian Government [(accessed on 27 April 2019)];2017 Available online: https://www.tga.gov.au/literature-review-safety-titanium-dioxide-and-zinc-oxide-nanoparticles-sunscreens.
Tan M.H., Commens C.A., Burnett L., Snitch P.J. A pilot study on the percutaneous absorption of microfine titanium dioxide from sunscreens. Australas. J. Dermatol. 1996;37:185–187. doi: 10.1111/j.1440-0960.1996.tb01050.x. PubMed DOI
Liou S.H., Tsai C.S., Pelclova D., Schubauer-Berigan M.K., Schulte P.A. Assessing the first wave of epidemiological studies of nanomaterial workers. J. Nanopart. Res. 2015;17:413. doi: 10.1007/s11051-015-3219-7. PubMed DOI PMC
Liou S.H., Wu W.T., Liao H.Y., Chen C.Y., Tsai C.Y., Jung W.T., Lee H.L. Global DNA methylation and oxidative stress biomarkers in workers exposed to metal oxide nanoparticles. J. Hazard. Mater. 2017;331:329–335. doi: 10.1016/j.jhazmat.2017.02.042. PubMed DOI
Liao H.Y., Chung Y.T., Lai C.H., Wang S.L., Chiang H.C., Li L.A., Tsou T.C., Li W.F., Lee H.L., Wu W.T., et al. Six-month follow-up study of health markers of nanomaterials among workers handling engineered nanomaterials. Nanotoxicology. 2014;8(Suppl. 1):100–110. doi: 10.3109/17435390.2013.858793. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Komarc M., Navratil T., Schwarz J., Zikova N., Makes O., et al. Leukotrienes in exhaled breath condensate and fractional exhaled nitric oxide in workers exposed to TiO2 nanoparticles. J. Breath Res. 2016;10:036004. doi: 10.1088/1752-7155/10/3/036004. PubMed DOI
Pelclova D., Zdimal V., Komarc M., Vlckova S., Fenclova Z., Ondracek J., Schwarz J., Kostejn M., Kacer P., Dvorackova S., et al. Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers. Nanomaterials. 2018;8:731. doi: 10.3390/nano8090731. PubMed DOI PMC
Pelclova D., Zdimal V., Kacer P., Fenclova Z., Vlckova S., Syslova K., Navratil T., Schwarz J., Zikova N., Barosova H., et al. Oxidative stress markers are elevated in exhaled breath condensate of workers exposed to nanoparticles during iron oxide pigment production. J. Breath Res. 2016;10:016004. doi: 10.1088/1752-7155/10/1/016004. PubMed DOI
Zhang R., Dai Y., Zhang X., Niu Y., Meng T., Li Y., Duan H., Bin P., Ye M., Jia X., et al. Reduced pulmonary function and increased pro-inflammatory cytokines in nanoscale carbon black-exposed workers. Part. Fibre Toxicol. 2014;11:73. doi: 10.1186/s12989-014-0073-1. PubMed DOI PMC
Lee J.S., Choi Y.C., Shin J.H., Lee J.H., Lee Y., Park S.Y., Baek J.E., Park J.D., Ahn K., Yu I.J. Health surveillance study of workers who manufacture multi-walled carbon nanotubes. Nanotoxicology. 2015;9:802–811. doi: 10.3109/17435390.2014.978404. PubMed DOI
Pelclova D., Zdimal V., Fenclova Z., Vlckova S., Turci F., Corazzari I., Kacer P., Schwarz J., Zikova N., Makes O., et al. Markers of oxidative damage of nucleic acids and proteins among workers exposed to TiO2 (nano) particles. Occup. Environ. Med. 2016;73:110–118. doi: 10.1136/oemed-2015-103161. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Zikova N., Komarc M., Fenclova Z., Vlckova S., Schwarz J., Makes O., Syslova K., et al. Markers of lipid oxidative damage in the exhaled breath condensate of nanoTiO2 production workers. Nanotoxicology. 2017;11:52–63. doi: 10.1080/17435390.2016.1262921. PubMed DOI
Zhao L., Zhu Y., Chen Z., Xu H., Zhou J., Tang S., Xu Z., Kong F., Li X., Zhang Y., et al. Cardiopulmonary effects induced by occupational exposure to titanium dioxide nanoparticles. Nanotoxicology. 2018;12:169–184. doi: 10.1080/17435390.2018.1425502. PubMed DOI
Pelclova D., Zdimal V., Schwarz J., Dvorackova S., Komarc M., Ondracek J., Kostejn M., Kacer P., Vlckova S., Fenclova Z., et al. Markers of oxidative stress in the exhaled breath condensate of workers handling nanocomposites. Nanomaterials. 2018;8:611. doi: 10.3390/nano8080611. PubMed DOI PMC
Horváth I., Barnes P.J., Loukides S., Sterk P.J., Högman M., Olin A.C., Amann A., Antus B., Baraldi E., Bikov A., et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017;49:1600965. doi: 10.1183/13993003.00965-2016. PubMed DOI
Dweik R.A., Boggs P.B., Erzurum S.C., Archer S., Fagan K., Hassoun P.M., Hill N.S., Humbert M., Kawut S.M., Krowka M., et al. An official ATS clinical practice guideline: Interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 2011;184:602–615. doi: 10.1164/rccm.9120-11ST. PubMed DOI PMC
Syslova K., Böhmova A., Mikoska M., Kuzma M., Pelclova D., Kacer P. Multimarker screening of oxidative stress in aging. Oxid. Med. Cell. Longev. 2014;2014 doi: 10.1155/2014/562860. PubMed DOI PMC
Peters-Golden M. Expanding roles for leukotrienes in airway inflammation. Curr. Allergy Asthma Rep. 2008;8:367–373. doi: 10.1007/s11882-008-0057-z. PubMed DOI
Pelclova D., Zdimal V., Kacer P., Vlckova S., Fenclova Z., Navratil T., Komarc M., Schwarz J., Zikova N., Makes O., et al. Markers of nucleic acids and proteins oxidation among office workers exposed to air pollutants including (nano)TiO2 particles. Neuro Endocrinol. Lett. 2016;37(Suppl. 1):3–16. PubMed
Pelclova D., Zdimal V., Kacer P., Komarc M., Fenclova Z., Vlckova S., Zikova N., Schwarz J., Makes O., Navratil T., et al. Markers of lipid oxidative damage among office workers exposed intermittently to air pollutants including nanoTiO2 particles. Rev. Environ. Health. 2017;32:193–200. doi: 10.1515/reveh-2016-0030. PubMed DOI
Tiano L., Armeni T., Venditti E., Barucca G., Mincarelli L., Damiani E. Modified TiO2 particles differentially affect human skin fibroblasts exposed to UVA light. Free Radic. Biol. Med. 2010;49:408–415. doi: 10.1016/j.freeradbiomed.2010.04.032. PubMed DOI
Effros R.M., Biller J., Foss B., Hoagland K., Dunning M.B., Castillo D., Bosbous M., Sun F., Shaker R. A simple method for estimating respiratory solute dilution in exhaled breath condensates. Am. J. Respir. Crit. Care Med. 2003;168:1500–1505. doi: 10.1164/rccm.200307-920OC. PubMed DOI
Klusackova P., Lebedova J., Kacer P., Kuzma M., Brabec M., Pelclova D., Fenclova Z., Navratil T. Leukotrienes and 8-isoprostane in exhaled breath condensate in bronchoprovocation tests with occupational allergens. Prostaglandins Leukot. Essent. Fatty Acids. 2008;78:281–292. doi: 10.1016/j.plefa.2008.03.006. PubMed DOI
Syslova K., Kacer P., Kuzma M., Klusackova P., Fenclova Z., Lebedova J., Pelclova D. Determination of 8-iso-prostaglandin F(2α) in exhaled breath condensate using combination of immunoseparation and LC-ESI-MS/MS. J. Chromatogr. B. 2008;867:8–14. doi: 10.1016/j.jchromb.2008.02.019. PubMed DOI
Syslova K., Kacer P., Kuzma M., Pankracova A., Fenclova Z., Vlckova S., Lebedova J., Pelclova D. LC-ESI-MS/MS method for oxidative stress multimarker screening in the exhaled breath condensate of asbestosis/silicosis patients. J. Breath Res. 2010;4:017104. doi: 10.1088/1752-7155/4/1/017104. PubMed DOI
Neprasova M., Maixnerova D., Novak J., Reily C., Julian B.A., Boron J., Novotny P., Suchanek M., Tesar V., Kacer P. Toward noninvasive diagnosis of IgA nephropathy: A pilot urinary metabolomic and proteomic study. Dis. Markers. 2016;2016:3650909. doi: 10.1155/2016/3650909. PubMed DOI PMC
Winkler H.C., Notter T., Meyer U., Naegeli H. Critical review of the safety assessment of titanium dioxide additives in food. J. Nanobiotechnol. 2018;16:51. doi: 10.1186/s12951-018-0376-8. PubMed DOI PMC
Pele L.C., Thoree V., Bruggraber S.F., Koller D., Thompson R.P., Lomer M.C., Powell J.J. Pharmaceutical/food grade titanium dioxide particles are absorbed into the bloodstream of human volunteers. Part. Fibre Toxicol. 2015;12:26. doi: 10.1186/s12989-015-0101-9. PubMed DOI PMC
Gulson B., McCall M., Korsch M., Gomez L., Casey P., Oytam Y., Taylor A., McCulloch M., Trotter J., Kinsley L., et al. Small amounts of zinc from zinc oxide particles in sunscreens applied outdoors are absorbed through human skin. Toxicol. Sci. 2010;118:140–149. doi: 10.1093/toxsci/kfq243. PubMed DOI
Gulson B., Wong H., Korsch M., Gomez L., Casey P., McCall M., McCulloch M., Trotter J., Stauber J., Greenoak G. Comparison of dermal absorption of zinc from different sunscreen formulations and differing UV exposure based on stable isotope tracing. Sci. Total Environ. 2012;420:313–318. doi: 10.1016/j.scitotenv.2011.12.046. PubMed DOI
Giacomoni P.U., Mammone T., Teri M.J. Gender-linked differences in human skin. Dermatol. Sci. 2009;55:144–149. doi: 10.1016/j.jdermsci.2009.06.001. PubMed DOI
Pelclova D., Barosova H., Kukutschova J., Zdimal V., Navratil T., Fenclova Z., Vlckova S., Schwarz J., Zikova N., Kacer P., et al. Raman microspectroscopy of exhaled breath condensate and urine in workers exposed to fine and nanoTiO2 particles: A cross-sectional study. J. Breath Res. 2015;9:036008. doi: 10.1088/1752-7155/9/3/036008. PubMed DOI
Nizamov S., Scherbahn V., Mirsky V.M. Detection and quantification of single engineered nanoparticles in complex samples using template matching in wide-field surface plasmon microscopy. Anal. Chem. 2016;88:10206–10214. doi: 10.1021/acs.analchem.6b02878. PubMed DOI
Lischkova L., Pelclova D., Hlusicka J., Navratil T., Vlckova S., Fenclova Z., Dvorackova S., Popov A., Michalcova A., Marek I., et al. Detection and identification of engineered nanoparticles in exhaled breath condensate, blood serum, and urine of occupationally exposed subjects. Monatsh. Chem. 2019;150:511–523. doi: 10.1007/s00706-019-2379-z. DOI
Bernauer U., Bodin L., Celleno L., Chaudhry Q.M., Coenraads P.J., Dusinska M., Gaffet E., Galli C.L., Panteri W., Rousselle C., et al. SCCS OPINION ON Titanium Dioxide (Nano Form) as UV-Filter in Sprays—SCCS/1583/17. European Union; Brussels, Belgium: 2018. [(accessed on 27 April 2019)]. Available online: http://ec.europa.eu/health/scientific_committees/consumer_safety/index_en.htm.
Pelcl T., Skrha J., Soupal J., Flekac M., Kacer P., Skrha J., Navratil T., Prazny M. Lipid peroxidation and impaired vascular function in patients with type 1 diabetes mellitus. Monatsh. Chem. 2019;150:525–529. doi: 10.1007/s00706-019-2355-7. DOI
Pelclova D., Fenclova Z., Kacer P., Kuzma M., Navratil T., Lebedova J. 8-isoprostane and leukotrienes in exhaled breath condensate in Czech subjects with silicosis. Ind. Health. 2007;45:766–774. doi: 10.2486/indhealth.45.766. PubMed DOI
Pelclova D., Fenclova Z., Kacer P., Kuzma M., Navratil T., Lebedova J. 2008 Increased 8-isoprostane, a marker of oxidative stress in exhaled breath condensate in subjects with asbestos exposure. Ind. Health. 2008;46:484–489. doi: 10.2486/indhealth.46.484. PubMed DOI
Pelclova D., Navratil T., Vlckova S., Fenclova Z., Pelcl T., Kacerova T., Kacer P. Exhaled breath condensate biomarkers reflect systemic changes in patients with chronic dioxin intoxication. Monatsh. Chem. 2018;149:1579–1586. doi: 10.1007/s00706-018-2211-1. DOI
Chézeau L., Sébillaud S., Safar R., Seidel C., Dembélé D., Lorcin M., Langlais C., Grossmann S., Nunge H., Michaux S., et al. Short- and long-term gene expression profiles induced by inhaled TiO2 nanostructured aerosol in rat lung. Toxicol. Appl. Pharmacol. 2018;356:54–64. doi: 10.1016/j.taap.2018.07.013. PubMed DOI
Rollerova E., Tulinska J., Liskova A., Kuricova M., Kovriznych J., Mlynarcikova A., Kiss A., Scsukova S. Titanium dioxide nanoparticles: Some aspects of toxicity/focus on the development. Endocr. Regul. 2015;49:97–112. doi: 10.4149/endo_2015_02_97. PubMed DOI
Behaviour of Titanium Dioxide Particles in Artificial Body Fluids and Human Blood Plasma