Toward Noninvasive Diagnosis of IgA Nephropathy: A Pilot Urinary Metabolomic and Proteomic Study

. 2016 ; 2016 () : 3650909. [epub] 20161009

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27799660

Grantová podpora
R01 GM098539 NIGMS NIH HHS - United States
K01 DK106341 NIDDK NIH HHS - United States
R01 DK078244 NIDDK NIH HHS - United States
P30 DK079337 NIDDK NIH HHS - United States
R01 DK082753 NIDDK NIH HHS - United States
R56 DK078244 NIDDK NIH HHS - United States

IgA nephropathy is diagnosed by renal biopsy, an invasive procedure with a risk of significant complications. Noninvasive approaches are needed for possible diagnostic purposes and especially for monitoring disease activity or responses to treatment. In this pilot project, we assessed the utility of urine samples as source of biomarkers of IgA nephropathy. We used spot urine specimens from 19 healthy controls, 11 patients with IgA nephropathy, and 8 renal-disease controls collected on day of renal biopsy. Urine samples were analyzed using untargeted metabolomic and targeted proteomic analyses by several experimental techniques: liquid chromatography coupled with mass spectrometry, immunomagnetic isolation of target proteins coupled with quantitation by mass spectrometry, and protein arrays. No single individual biomarker completely differentiated the three groups. Therefore, we tested the utility of several markers combined in a panel. Discriminant analysis revealed that combination of seven markers, three metabolites (dodecanal, 8-hydroxyguanosine, and leukotriene C4), three proteins (α1-antitrypsin, IgA-uromodulin complex, and galactose-deficient IgA1), and heparan sulfate, differentiated patients with IgA nephropathy from patients with other renal diseases and healthy controls. Future studies are needed to validate these preliminary findings and to determine the power of these urinary markers for assessment of responses to therapy.

Zobrazit více v PubMed

Eiro M., Katoh T., Watanabe T. Risk factors for bleeding complications in percutaneous renal biopsy. Clinical and Experimental Nephrology. 2005;9(1):40–45. doi: 10.1007/s10157-004-0326-7. PubMed DOI

Parrish A. E. Complications of percutaneous renal biopsy: a review of 37 years' experience. Clinical Nephrology. 1992;38(3):135–141. PubMed

Fliser D., Novak J., Thongboonkerd V., et al. Advances in urinary proteome analysis and biomarker discovery. Journal of the American Society of Nephrology. 2007;18(4):1057–1071. doi: 10.1681/asn.2006090956. PubMed DOI

Han W. K., Waikar S. S., Johnson A., et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney International. 2008;73(7):863–869. doi: 10.1038/sj.ki.5002715. PubMed DOI PMC

Hastings M. C., Moldoveanu Z., Suzuki H., et al. Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Expert Opinion on Medical Diagnostics. 2013;7(6):615–627. doi: 10.1517/17530059.2013.856878. PubMed DOI PMC

Julian B. A., Suzuki H., Suzuki Y., Tomino Y., Spasovski G., Novak J. Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics—Clinical Applications. 2009;3(9):1029–1043. doi: 10.1002/prca.200800243. PubMed DOI PMC

Hewitt S. M., Dear J., Star R. A. Discovery of protein biomarkers for renal diseases. Journal of the American Society of Nephrology. 2004;15(7):1677–1689. doi: 10.1097/01.ASN.0000129114.92265.32. PubMed DOI

Mischak H., Allmaier G., Apweiler R., et al. Recommendations for biomarker identification and qualification in clinical proteomics. Science Translational Medicine. 2010;2(46) doi: 10.1126/scitranslmed.3001249.46ps42 PubMed DOI

Mischak H., Ioannidis J. P. A., Argiles A., et al. Implementation of proteomic biomarkers: making it work. European Journal of Clinical Investigation. 2012;42(9):1027–1036. doi: 10.1111/j.1365-2362.2012.02674.x. PubMed DOI PMC

Pontillo C., Jacobs L., Staessen J. A., et al. A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrology Dialysis Transplantation. 2016 doi: 10.1093/ndt/gfw239. PubMed DOI

Maixnerova D., Reily C., Bian Q., Neprasova M., Novak J., Tesar V. Markers for the progression of IgA nephropathy. Journal of Nephrology. 2016;29(4):535–541. doi: 10.1007/s40620-016-0299-0. PubMed DOI PMC

Schlosser G., Kačer P., Kuzma M., et al. Coupling immunomagnetic separation on magnetic beads with matrix-assisted laser desorption ionization-time of flight mass spectrometry for detection of staphylococcal enterotoxin B. Applied and Environmental Microbiology. 2007;73(21):6945–6952. doi: 10.1128/aem.01136-07. PubMed DOI PMC

Ritchie M. E., Phipson B., Wu D., et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7, article e47) doi: 10.1093/nar/gkv007. PubMed DOI PMC

Vandeginste B. G. M. Handbook of Chemometrics and Qualimetrics, Part B. 1998.

Yanagawa H., Suzuki H., Suzuki Y., et al. A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS ONE. 2014;9(5) doi: 10.1371/journal.pone.0098081.e98081 PubMed DOI PMC

Novak J., Renfrow M. B., Gharavi A. G., Julian B. A. Pathogenesis of IgA nephropathy. Invited review. Current Opinion in Nephrology and Hypertension. 2013;22:287–294. PubMed

Obara T., Mizoguchi S., Shimozuru Y., Sato T., Hotta O. The complex of immunoglobulin A and uromodulin as a diagnostic marker for immunoglobulin A nephropathy. Clinical and Experimental Nephrology. 2012;16(5):713–721. doi: 10.1007/s10157-012-0617-3. PubMed DOI PMC

Matousovic K., Novak J., Yanagihara T., et al. IgA-containing immune complexes in the urine of IgA nephropathy patients. Nephrology Dialysis Transplantation. 2006;21(9):2478–2484. doi: 10.1093/ndt/gfl240. PubMed DOI

Wu J., Wang N., Wang J., et al. Identification of a uromodulin fragment for diagnosis of IgA nephropathy. Rapid Communications in Mass Spectrometry. 2010;24(14):1971–1978. doi: 10.1002/rcm.4601. PubMed DOI

Nakata J., Suzuki Y., Suzuki H., et al. Changes in nephritogenic serum galactose-deficient IgA1 in IgA nephropathy following tonsillectomy and steroid therapy. PLoS ONE. 2014;9(2, article e89707) doi: 10.1371/journal.pone.0089707. PubMed DOI PMC

Suzuki H., Raska M., Yamada K., et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. The Journal of Biological Chemistry. 2014;289(8):5330–5339. doi: 10.1074/jbc.m113.512277. PubMed DOI PMC

Moldoveanu Z., Wyatt R. J., Lee J. Y., et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney International. 2007;71(11):1148–1154. doi: 10.1038/sj.ki.5002185. PubMed DOI

Hastings M. C., Moldoveanu Z., Julian B. A., et al. Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clinical Journal of the American Society of Nephrology. 2010;5(11):2069–2074. doi: 10.2215/cjn.03270410. PubMed DOI PMC

Hastings M. C., Afshan S., Sanders J. T., et al. Serum galactose-deficient IgA1 level is not associated with proteinuria in children with IgA nephropathy. International Journal of Nephrology. 2012;2012:7. doi: 10.1155/2012/315467.315467 PubMed DOI PMC

Zhao N., Hou P., Lv J., et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney International. 2012;82(7):790–796. doi: 10.1038/ki.2012.197. PubMed DOI PMC

Coppo R., Camilla R., Amore A., Peruzzi L. Oxidative stress in IgA nephropathy. Nephron Clinical Practice. 2010;116(3):c196–c199. doi: 10.1159/000317199. PubMed DOI

Camilla R., Suzuki H., Daprà V., et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clinical Journal of the American Society of Nephrology. 2011;6(8):1903–1911. doi: 10.2215/CJN.11571210. PubMed DOI PMC

McMahon B., Mitchell D., Shattock R., Martin F., Brady H. R., Godson C. Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. The FASEB Journal. 2002;16(13):1817–1819. PubMed

Kurogi Y. Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease. Medicinal Research Reviews. 2003;23(1):15–31. doi: 10.1002/med.10028. PubMed DOI

Celie J. W., Reijmers R. M., Slot E. M., et al. Tubulointerstitial heparan sulfate proteoglycan changes in human renal diseases correlate with leukocyte influx and proteinuria. American Journal of Physiology—Renal Physiology. 2008;294(1):F253–F263. doi: 10.1152/ajprenal.00429.2007. PubMed DOI

Zivkovic A. M., Yang J., Georgi K., et al. Serum oxylipin profiles in IgA nephropathy patients reflect kidney functional alterations. Metabolomics. 2012;8(6):1102–1113. doi: 10.1007/s11306-012-0417-5. PubMed DOI PMC

Zaferani A., Vivès R. R., Van Der Pol P., et al. Identification of tubular heparan sulfate as a docking platform for the alternative complement component properdin in proteinuric renal disease. Journal of Biological Chemistry. 2011;286(7):5359–5367. doi: 10.1074/jbc.M110.167825. PubMed DOI PMC

Stangou M., Papagianni A., Bantis C., et al. Up-regulation of urinary markers predict outcome in IgA nephropathy but their predictive value is influenced by treatment with steroids and azathioprine. Clinical Nephrology. 2013;80(3):203–210. doi: 10.5414/cn107836. PubMed DOI

Kalliakmani P., Nakopoulou L., Tsakas S., Gerolymos M., Papasotiriou M., Goumenos D. S. Urinary interleukin-6 (IL-6) and transforming growth factor (TGF-β) levels in corticosteroidtreated patients with IgA nephropathy. Clinical Nephrology. 2011;76(2):144–150. doi: 10.5414/CN106983. PubMed DOI

Li Y., Wang J., Zhu X., Feng Q., Li X., Feng X. Urinary protein markers predict the severity of renal histological lesions in children with mesangial proliferative glomerulonephritis. BMC Nephrology. 2012;13, article 29 doi: 10.1186/1471-2369-13-29. PubMed DOI PMC

Moon P.-G., Lee J.-E., You S., et al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics. 2011;11(12):2459–2475. doi: 10.1002/pmic.201000443. PubMed DOI

Stangou M., Alexopoulos E., Papagianni A., et al. Urinary levels of epidermal growth factor, interleukin-6 and monocyte chemoattractant protein-1 may act as predictor markers of renal function outcome in immunoglobulin A nephropathy. Nephrology. 2009;14(6):613–620. doi: 10.1111/j.1440-1797.2008.01051.x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace