Toward Noninvasive Diagnosis of IgA Nephropathy: A Pilot Urinary Metabolomic and Proteomic Study
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM098539
NIGMS NIH HHS - United States
K01 DK106341
NIDDK NIH HHS - United States
R01 DK078244
NIDDK NIH HHS - United States
P30 DK079337
NIDDK NIH HHS - United States
R01 DK082753
NIDDK NIH HHS - United States
R56 DK078244
NIDDK NIH HHS - United States
PubMed
27799660
PubMed Central
PMC5075301
DOI
10.1155/2016/3650909
Knihovny.cz E-zdroje
- MeSH
- aldehydy moč MeSH
- alfa-1-antitrypsin moč MeSH
- biologické markery moč MeSH
- dospělí MeSH
- guanosin analogy a deriváty moč MeSH
- heparitinsulfát moč MeSH
- IgA nefropatie patologie moč MeSH
- imunoglobulin A moč MeSH
- leukotrien C4 moč MeSH
- lidé středního věku MeSH
- lidé MeSH
- metabolom * MeSH
- proteom * MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- uromodulin moč MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 8-hydroxyguanosine MeSH Prohlížeč
- aldehydy MeSH
- alfa-1-antitrypsin MeSH
- biologické markery MeSH
- guanosin MeSH
- heparitinsulfát MeSH
- imunoglobulin A MeSH
- leukotrien C4 MeSH
- proteom * MeSH
- uromodulin MeSH
IgA nephropathy is diagnosed by renal biopsy, an invasive procedure with a risk of significant complications. Noninvasive approaches are needed for possible diagnostic purposes and especially for monitoring disease activity or responses to treatment. In this pilot project, we assessed the utility of urine samples as source of biomarkers of IgA nephropathy. We used spot urine specimens from 19 healthy controls, 11 patients with IgA nephropathy, and 8 renal-disease controls collected on day of renal biopsy. Urine samples were analyzed using untargeted metabolomic and targeted proteomic analyses by several experimental techniques: liquid chromatography coupled with mass spectrometry, immunomagnetic isolation of target proteins coupled with quantitation by mass spectrometry, and protein arrays. No single individual biomarker completely differentiated the three groups. Therefore, we tested the utility of several markers combined in a panel. Discriminant analysis revealed that combination of seven markers, three metabolites (dodecanal, 8-hydroxyguanosine, and leukotriene C4), three proteins (α1-antitrypsin, IgA-uromodulin complex, and galactose-deficient IgA1), and heparan sulfate, differentiated patients with IgA nephropathy from patients with other renal diseases and healthy controls. Future studies are needed to validate these preliminary findings and to determine the power of these urinary markers for assessment of responses to therapy.
Departments of Microbiology and Medicine University of Alabama at Birmingham Birmingham AL 35294 USA
Essence Line Plzeňská 130 221 150 00 Prague 5 Czech Republic
University of Chemistry and Technology Technická 5 166 28 Prague 6 Czech Republic
Zobrazit více v PubMed
Eiro M., Katoh T., Watanabe T. Risk factors for bleeding complications in percutaneous renal biopsy. Clinical and Experimental Nephrology. 2005;9(1):40–45. doi: 10.1007/s10157-004-0326-7. PubMed DOI
Parrish A. E. Complications of percutaneous renal biopsy: a review of 37 years' experience. Clinical Nephrology. 1992;38(3):135–141. PubMed
Fliser D., Novak J., Thongboonkerd V., et al. Advances in urinary proteome analysis and biomarker discovery. Journal of the American Society of Nephrology. 2007;18(4):1057–1071. doi: 10.1681/asn.2006090956. PubMed DOI
Han W. K., Waikar S. S., Johnson A., et al. Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney International. 2008;73(7):863–869. doi: 10.1038/sj.ki.5002715. PubMed DOI PMC
Hastings M. C., Moldoveanu Z., Suzuki H., et al. Biomarkers in IgA nephropathy: relationship to pathogenetic hits. Expert Opinion on Medical Diagnostics. 2013;7(6):615–627. doi: 10.1517/17530059.2013.856878. PubMed DOI PMC
Julian B. A., Suzuki H., Suzuki Y., Tomino Y., Spasovski G., Novak J. Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteomics—Clinical Applications. 2009;3(9):1029–1043. doi: 10.1002/prca.200800243. PubMed DOI PMC
Hewitt S. M., Dear J., Star R. A. Discovery of protein biomarkers for renal diseases. Journal of the American Society of Nephrology. 2004;15(7):1677–1689. doi: 10.1097/01.ASN.0000129114.92265.32. PubMed DOI
Mischak H., Allmaier G., Apweiler R., et al. Recommendations for biomarker identification and qualification in clinical proteomics. Science Translational Medicine. 2010;2(46) doi: 10.1126/scitranslmed.3001249.46ps42 PubMed DOI
Mischak H., Ioannidis J. P. A., Argiles A., et al. Implementation of proteomic biomarkers: making it work. European Journal of Clinical Investigation. 2012;42(9):1027–1036. doi: 10.1111/j.1365-2362.2012.02674.x. PubMed DOI PMC
Pontillo C., Jacobs L., Staessen J. A., et al. A urinary proteome-based classifier for the early detection of decline in glomerular filtration. Nephrology Dialysis Transplantation. 2016 doi: 10.1093/ndt/gfw239. PubMed DOI
Maixnerova D., Reily C., Bian Q., Neprasova M., Novak J., Tesar V. Markers for the progression of IgA nephropathy. Journal of Nephrology. 2016;29(4):535–541. doi: 10.1007/s40620-016-0299-0. PubMed DOI PMC
Schlosser G., Kačer P., Kuzma M., et al. Coupling immunomagnetic separation on magnetic beads with matrix-assisted laser desorption ionization-time of flight mass spectrometry for detection of staphylococcal enterotoxin B. Applied and Environmental Microbiology. 2007;73(21):6945–6952. doi: 10.1128/aem.01136-07. PubMed DOI PMC
Ritchie M. E., Phipson B., Wu D., et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015;43(7, article e47) doi: 10.1093/nar/gkv007. PubMed DOI PMC
Vandeginste B. G. M. Handbook of Chemometrics and Qualimetrics, Part B. 1998.
Yanagawa H., Suzuki H., Suzuki Y., et al. A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS ONE. 2014;9(5) doi: 10.1371/journal.pone.0098081.e98081 PubMed DOI PMC
Novak J., Renfrow M. B., Gharavi A. G., Julian B. A. Pathogenesis of IgA nephropathy. Invited review. Current Opinion in Nephrology and Hypertension. 2013;22:287–294. PubMed
Obara T., Mizoguchi S., Shimozuru Y., Sato T., Hotta O. The complex of immunoglobulin A and uromodulin as a diagnostic marker for immunoglobulin A nephropathy. Clinical and Experimental Nephrology. 2012;16(5):713–721. doi: 10.1007/s10157-012-0617-3. PubMed DOI PMC
Matousovic K., Novak J., Yanagihara T., et al. IgA-containing immune complexes in the urine of IgA nephropathy patients. Nephrology Dialysis Transplantation. 2006;21(9):2478–2484. doi: 10.1093/ndt/gfl240. PubMed DOI
Wu J., Wang N., Wang J., et al. Identification of a uromodulin fragment for diagnosis of IgA nephropathy. Rapid Communications in Mass Spectrometry. 2010;24(14):1971–1978. doi: 10.1002/rcm.4601. PubMed DOI
Nakata J., Suzuki Y., Suzuki H., et al. Changes in nephritogenic serum galactose-deficient IgA1 in IgA nephropathy following tonsillectomy and steroid therapy. PLoS ONE. 2014;9(2, article e89707) doi: 10.1371/journal.pone.0089707. PubMed DOI PMC
Suzuki H., Raska M., Yamada K., et al. Cytokines alter IgA1 O-glycosylation by dysregulating C1GalT1 and ST6GalNAc-II enzymes. The Journal of Biological Chemistry. 2014;289(8):5330–5339. doi: 10.1074/jbc.m113.512277. PubMed DOI PMC
Moldoveanu Z., Wyatt R. J., Lee J. Y., et al. Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney International. 2007;71(11):1148–1154. doi: 10.1038/sj.ki.5002185. PubMed DOI
Hastings M. C., Moldoveanu Z., Julian B. A., et al. Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clinical Journal of the American Society of Nephrology. 2010;5(11):2069–2074. doi: 10.2215/cjn.03270410. PubMed DOI PMC
Hastings M. C., Afshan S., Sanders J. T., et al. Serum galactose-deficient IgA1 level is not associated with proteinuria in children with IgA nephropathy. International Journal of Nephrology. 2012;2012:7. doi: 10.1155/2012/315467.315467 PubMed DOI PMC
Zhao N., Hou P., Lv J., et al. The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney International. 2012;82(7):790–796. doi: 10.1038/ki.2012.197. PubMed DOI PMC
Coppo R., Camilla R., Amore A., Peruzzi L. Oxidative stress in IgA nephropathy. Nephron Clinical Practice. 2010;116(3):c196–c199. doi: 10.1159/000317199. PubMed DOI
Camilla R., Suzuki H., Daprà V., et al. Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clinical Journal of the American Society of Nephrology. 2011;6(8):1903–1911. doi: 10.2215/CJN.11571210. PubMed DOI PMC
McMahon B., Mitchell D., Shattock R., Martin F., Brady H. R., Godson C. Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. The FASEB Journal. 2002;16(13):1817–1819. PubMed
Kurogi Y. Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease. Medicinal Research Reviews. 2003;23(1):15–31. doi: 10.1002/med.10028. PubMed DOI
Celie J. W., Reijmers R. M., Slot E. M., et al. Tubulointerstitial heparan sulfate proteoglycan changes in human renal diseases correlate with leukocyte influx and proteinuria. American Journal of Physiology—Renal Physiology. 2008;294(1):F253–F263. doi: 10.1152/ajprenal.00429.2007. PubMed DOI
Zivkovic A. M., Yang J., Georgi K., et al. Serum oxylipin profiles in IgA nephropathy patients reflect kidney functional alterations. Metabolomics. 2012;8(6):1102–1113. doi: 10.1007/s11306-012-0417-5. PubMed DOI PMC
Zaferani A., Vivès R. R., Van Der Pol P., et al. Identification of tubular heparan sulfate as a docking platform for the alternative complement component properdin in proteinuric renal disease. Journal of Biological Chemistry. 2011;286(7):5359–5367. doi: 10.1074/jbc.M110.167825. PubMed DOI PMC
Stangou M., Papagianni A., Bantis C., et al. Up-regulation of urinary markers predict outcome in IgA nephropathy but their predictive value is influenced by treatment with steroids and azathioprine. Clinical Nephrology. 2013;80(3):203–210. doi: 10.5414/cn107836. PubMed DOI
Kalliakmani P., Nakopoulou L., Tsakas S., Gerolymos M., Papasotiriou M., Goumenos D. S. Urinary interleukin-6 (IL-6) and transforming growth factor (TGF-β) levels in corticosteroidtreated patients with IgA nephropathy. Clinical Nephrology. 2011;76(2):144–150. doi: 10.5414/CN106983. PubMed DOI
Li Y., Wang J., Zhu X., Feng Q., Li X., Feng X. Urinary protein markers predict the severity of renal histological lesions in children with mesangial proliferative glomerulonephritis. BMC Nephrology. 2012;13, article 29 doi: 10.1186/1471-2369-13-29. PubMed DOI PMC
Moon P.-G., Lee J.-E., You S., et al. Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics. 2011;11(12):2459–2475. doi: 10.1002/pmic.201000443. PubMed DOI
Stangou M., Alexopoulos E., Papagianni A., et al. Urinary levels of epidermal growth factor, interleukin-6 and monocyte chemoattractant protein-1 may act as predictor markers of renal function outcome in immunoglobulin A nephropathy. Nephrology. 2009;14(6):613–620. doi: 10.1111/j.1440-1797.2008.01051.x. PubMed DOI
Deep Airway Inflammation and Respiratory Disorders in Nanocomposite Workers