Traction-separation law parameters for the description of age-related changes in the delamination strength of the human descending thoracic aorta
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20-11186S
Grantová Agentura České Republiky
PubMed
38985231
PubMed Central
PMC11554823
DOI
10.1007/s10237-024-01871-1
PII: 10.1007/s10237-024-01871-1
Knihovny.cz E-zdroje
- Klíčová slova
- Aging, Cohesive model, Crack, Damage, Finite elements method, Fracture,
- MeSH
- analýza metodou konečných prvků MeSH
- aorta thoracica * fyziologie MeSH
- biomechanika MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mechanický stres MeSH
- modely kardiovaskulární MeSH
- počítačová simulace MeSH
- senioři MeSH
- stárnutí fyziologie MeSH
- trakce MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
Aortic dissection is a life-threatening disease that consists in the development of a tear in the wall of the aorta. The initial tear propagates as a discontinuity leading to separation within the aortic wall, which can result in the creation of a so-called false lumen. A fatal threat occurs if the rupture extends through the whole thickness of the aortic wall, as blood may then leak. It is generally accepted that the dissection, which can sometime extend along the entire length of the aorta, propagates via a delamination mechanism. The aim of the present paper is to provide experimentally validated parameters of a mathematical model for the description of the wall's cohesion. A model of the peeling experiment was built in Abaqus. The delamination interface was described by a piecewise linear traction-separation law. The bulk behavior of the aorta was assumed to be nonlinearly elastic, anisotropic, and incompressible. Our simulations resulted in estimates of the material parameters for the traction-separation law of the human descending thoracic aorta, which were obtained by minimizing the differences between the FEM predictions and the delamination force given by the regression of the peeling experiments. The results show that the stress at damage initiation, Tc, should be understood as an age-dependent quantity, and under the assumptions of our model this dependence can be expressed by linear regression as Tc = - 13.03·10-4·Age + 0.2485 if the crack front advances in the axial direction, and Tc = - 7.58·10-4·Age + 0.1897 if the crack front advances in the direction of the aortic circumference (Tc [MPa], Age [years]). Other model parameters were the stiffness K and the separation at failure, δf-δc (K = 0.5 MPa/mm, δf-δc = 0.1 mm). The material parameters provided by our study can be used in numerical simulations of the biomechanics of dissection propagation through the aorta especially when age-associated phenomena are studied.
Zobrazit více v PubMed
ABAQUS (2019) Analysis user’s manual, Version 2019. Dassault Systemes Simulia, Inc.
Amabili M, Arena GO, Balasubramanian P, Breslavsky ID, Cartier R, Ferrari G, Holzapfel GA, Kassab A, Mongrain R (2020) Biomechanical characterization of a chronic type a dissected human aorta. J Biomech 110:109978. 10.1016/j.jbiomech.2020.109978 PubMed
Angouras DC, Kritharis EP, Sokolis DP (2019) Regional distribution of delamination strength in ascending thoracic aortic aneurysms. J Mech Behav Biomed Mater 98:58–70. 10.1016/j.jmbbm.2019.06.001 PubMed
Belytschko T, Black T (1999) Elastic crack growth in nite elements with minimal remeshing. Int J Numer Meth Eng 45(5):601–620
Belytschko T, Gracie R, Ventura G (2009) A review of extended/generalized fnite element methods for material modeling. Modell Simul Mater Sci Eng 17(4):043001
Carson MW, Roach MR (1990) The strength of the aortic media and its role in the propagation of aortic dissection. J Biomech 23(6):579–588. 10.1016/0021-9290(90)90050-d PubMed
Chung JC-Y, Wong E, Tang M, Eliathamby D, Forbes TL, Butany J, Simmons CA, Ouzounian M (2020) Biomechanics of aortic dissection: a comparison of aortas associated with bicuspid and tricuspid aortic valves. J Am Heart Assoc. 10.1161/jaha.120.016715 PubMed PMC
Clark JM, Glagov S (1985) Transmural organization of the arterial media. The lamellar unit revisited. Arterioscler Off J Am Heart Assoc 5(1):19–34. 10.1161/01.atv.5.1.19 PubMed
Donahue CL, Badal RM, Younger TS et al (2024) Atherosclerotic calcifications have a local effect on the peel behavior of human aortic media. J Biomech Eng. 10.1115/1.4064682 PubMed PMC
Ferrara A, Pandolfi A (2010) A numerical study of arterial media dissection processes. Int J Fract 166(1–2):21–33. 10.1007/s10704-010-9480-y
FitzGibbon B, McGarry P (2021) Development of a test method to investigate mode II fracture and dissection of arteries. Acta Biomater 121:444–460. 10.1016/j.actbio.2020.11.023 PubMed
Forsell C, Gasser TC (2011) Numerical simulation of the failure of ventricular tissue due to deep penetration: the impact of constitutive properties. J Biomech 44(1):45–51. 10.1016/j.jbiomech.2010.08.022 PubMed
Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer Science + Business Media, New York
Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol Heart Circ Physiol 237:H620–H631. 10.1152/ajpheart.1979.237.5.H620 PubMed
Gasser TC, Holzapfel GA (2003) Geometrically non-linear and consistently linearized embedded strong discontinuity models for 3D problems with an application to the dissection analysis of soft biological tissues. Comput Methods Appl Mech Eng 192(47–48):5059–5098. 10.1016/j.cma.2003.06.001
Gasser TC, Holzapfel GA (2006) Modeling the propagation of arterial dissection. Eur J Mech A Solids 25(4):617–633. 10.1016/j.euromechsol.2006.05.004
Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35. 10.1098/rsif.2005.0073 PubMed PMC
Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester
Holzapfel GA, Ogden RW (2010) Constitutive modelling of arteries. Proc R Soc Math Phys Eng Sci 466(2118):1551–1597. 10.1098/rspa.2010.0058
Holzapfel GA, Gasser TC, Ogden RW (2000) A New constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61(1/3):1–48. 10.1023/a:1010835316564
Holzapfel GA, Niestrawska JA, Ogden RW et al (2015) Modelling non-symmetric collagen fibre dispersion in arterial walls. J R Soc Interface. 10.1098/rsif.2015.0188 PubMed PMC
Horny L, Adamek T, Chlup H, Zitny R (2012) Age estimation based on a combined arteriosclerotic index. Int J Legal Med 126:321–326. 10.1007/s00414-011-0653-7 PubMed
Horny L, Adamek T, Zitny R (2013) Age-related changes in longitudinal prestress in human abdominal aorta. Arch Appl Mech 83:875–888. 10.1007/s00419-012-0723-4
Horný L, Netušil M, Daniel M (2014a) Limiting extensibility constitutive model with distributed fibre orientations and ageing of abdominal aorta. J Mech Behav Biomed Mater 38:39–51. 10.1016/j.jmbbm.2014.05.021 PubMed
Horný L, Netušil M, Voňavková T (2014b) Axial prestretch and circumferential distensibility in biomechanics of abdominal aorta. Biomech Model Mechanobiol 13:783–799. 10.1007/s10237-013-0534-8 PubMed
Horný L, Roubalová L, Kronek J, Chlup H, Adámek T, Blanková A, Petřivý Z, Suchý T, Tichý P (2022) Correlation between age, location, orientation, loading velocity and delamination strength in the human aorta. J Mech Behav Biomed Mater 133:105340. 10.1016/j.jmbbm.2022.105340 PubMed
Irwin G, Wells A (1965) A continuum-mechanics view of crack propagation. Metall Rev 10(1):223–270
Itskov M (2019) Tensor algebra and tensor analysis for engineers (with applications to continuum mechanics), 5th edn. Springer, Cham
Jadidi M, Habibnezhad M, Anttila E, Maleckis K, Desyatova A, MacTaggart J, Kamenskiy A (2020) Mechanical and structural changes in human thoracic aortas with age. Acta Biomater 103:172–188. 10.1016/j.actbio.2019.12.024 PubMed PMC
Kassab GS (2007) Design of coronary circulation: a minimum energy hypothesis. Comput Methods Appl Mech Eng 196(31–32):3033–3042. 10.1016/j.cma.2006.09.024
Kozuń M (2016) Delamination properties of the human thoracic arterial wall with early stage of atherosclerosis lesions. J Theor Appl Mech. 10.15632/jtam-pl.54.1.229
Kozuń M, Kobielarz M, Chwiłkowska A, Pezowicz C (2018) The impact of development of atherosclerosis on delamination resistance of the thoracic aortic wall. J Mech Behav Biomed Mater 79:292–300. 10.1016/j.jmbbm.2018.01.009 PubMed
Labrosse MR, Gerson ER, Veinot JP, Beller CJ (2013) Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress. J Mech Behav Biomed Mater 17:44–55. 10.1016/j.jmbbm.2012.08.004 PubMed
Leng X, Chen X, Deng X, Sutton MA, Lessner SM (2015) Modeling of experimental atherosclerotic plaque delamination. Ann Biomed Eng 43(12):2838–2851. 10.1007/s10439-015-1357-9 PubMed
Leng X, Davis LA, Deng X, Sutton MA, Lessner SM (2016) Numerical modeling of experimental human fibrous cap delamination. J Mech Behav Biomed Mater 59:322–336. 10.1016/j.jmbbm.2016.02.011 PubMed PMC
Leng X, Zhou B, Deng X, Davis L, Lessner SM, Sutton MA, Shazly T (2018) Experimental and numerical studies of two arterial wall delamination modes. J Mech Behav Biomed Mater 77:321–330. 10.1016/j.jmbbm.2017.09.025 PubMed
MacLean NF, Dudek NL, Roach MR (1999) The role of radial elastic properties in the development of aortic dissections. J Vasc Surg 29(4):703–710. 10.1016/s0741-5214(99)70317-4 PubMed
Merei B, Badel P, Davis L, Sutton MA, Avril S, Lessner SM (2017) Atherosclerotic plaque delamination: experiments and 2D finite element model to simulate plaque peeling in two strains of transgenic mice. J Mech Behav Biomed Mater 67:19–30. 10.1016/j.jmbbm.2016.12.001 PubMed
Miao T, Tian L, Leng X, Miao Z, Wang J, Xu C, Liu L (2020) A comparative study of cohesive zone models for predicting delamination fracture behaviors of arterial wall. Open Phys 18(1):467–477. 10.1515/phys-2020-0134
Mohammadi S (2008) Extended nite element method: for fracture analysis of structures. John Wiley & Sons, Hoboken
Myneni M, Rao A, Jiang M, Moreno MR, Rajagopal KR, Benjamin CC (2020) Segmental variations in the peel characteristics of the porcine thoracic aorta. Ann Biomed Eng 48(6):1751–1767. 10.1007/s10439-020-02489-x PubMed
Noble C, van der Sluis O, Voncken RMJ, Burke O, Franklin SE, Lewis R, Taylor ZA (2017) Simulation of arterial dissection by a penetrating external body using cohesive zone modelling. J Mech Behav Biomed Mater 71:95–105. 10.1016/j.jmbbm.2017.03.004 PubMed
Pal S, Tsamis A, Pasta S et al (2014) A mechanistic model on the role of “radially-running” collagen fibers on dissection properties of human ascending thoracic aorta. J Biomech 47:981–988. 10.1016/j.jbiomech.2014.01.005 PubMed PMC
Pasta S, Phillippi JA, Gleason TG, Vorp DA (2012) Effect of aneurysm on the mechanical dissection properties of the human ascending thoracic aorta. J Thorac Cardiovasc Surg 143(2):460–467. 10.1016/j.jtcvs.2011.07.058 PubMed PMC
Prêtre R, Von Segesser LK (1997) Aortic dissection. Lancet 349(9063):1461–1464. 10.1016/s0140-6736(96)09372-5 PubMed
Prokop EK, Palmer RF, Wheat MW Jr (1970) Hydrodynamic forces in dissecting aneurysms. Circ Res 27(1):121–127. 10.1161/01.res.27.1.121 PubMed
Ríos-Ruiz I, Cilla M, Martínez MA, Peña E (2021) Methodology to calibrate the dissection properties of aorta layers from two sets of experimental measurements. Mathematics 9(14):1593. 10.3390/math9141593
Ríos-Ruiz I, Martínez MÁ, Peña E (2022) Is location a significant parameter in the layer dependent dissection properties of the aorta? Biomech Model Mechanobiol 21(6):1887–1901. 10.1007/s10237-022-01627-9 PubMed PMC
Roach MR, Song SH (1994) Variations in strength of the porcine aorta as a function of location. Clin Invest Med 17(4):308–318 PubMed
Sherifova S, Holzapfel GA (2019) Biomechanics of aortic wall failure with a focus on dissection and aneurysm: a review. Acta Biomater 99:1–17. 10.1016/j.actbio.2019.08.017 PubMed PMC
Sherifova S, Holzapfel GA (2020) Biochemomechanics of the thoracic aorta in health and disease. Progress Biomed Eng 2(3):032002. 10.1088/2516-1091/ab9a29
Sokolis DP, Papadodima SA (2022a) Regional delamination strength in the human aorta underlies the anatomical localization of the dissection channel. J Biomech 141:111174. 10.1016/j.jbiomech.2022.111174 PubMed
Sokolis DP, Papadodima SA (2022) Regional delamination strength in the human aorta underlies the anatomical localization of the dissection channel. J Biomech. 10.1016/j.jbiomech.2022.111174 PubMed
Sommer G, Gasser TC, Regitnig P, Auer M, Holzapfel GA (2008) Dissection properties of the human aortic media: an experimental study. J Biomech Eng. 10.1115/1.2898733 PubMed
Spencer AJM (1982) Deformation of fiber-reinforced materials. Oxford University Press, Oxford
Takamizawa K, Hayashi K (1987) Strain energy density function and uniform strain hypothesis for arterial mechanics. J Biomech 20:7–17. 10.1016/0021-9290(87)90262-4 PubMed
Tanaka H, Okada K, Kawanishi Y, Matsumori M, Okita Y (2009) Clinical significance of anastomotic leak in ascending aortic replacement for acute aortic dissection. Interact Cardiovasc Thorac Surg 9(2):209–212. 10.1510/icvts.2008.201558 PubMed
Thubrikar MJ (2007) Vascular mechanics and pathology. Springer, US
Tiessen IM, Roach MR (1993) Factors in the initiation and propagation of aortic dissections in human autopsy aortas. J Biomech Eng 115(1):123–125. 10.1115/1.2895461 PubMed
Tong J, Sommer G, Regitnig P, Holzapfel GA (2011) Dissection properties and mechanical strength of tissue components in human carotid bifurcations. Ann Biomed Eng 39(6):1703–1719. 10.1007/s10439-011-0264-y PubMed
Tong J, Cohnert T, Regitnig P, Kohlbacher J, Birner-Gruenberger R, Schriefl AJ, Sommer G, Holzapfel GA (2014) Variations of dissection properties and mass fractions with thrombus age in human abdominal aortic aneurysms. J Biomech 47(1):14–23. 10.1016/j.jbiomech.2013.10.027 PubMed
Tong J, Cheng Y, Holzapfel GA (2016) Mechanical assessment of arterial dissection in health and disease: advancements and challenges. J Biomech 49(12):2366–2373. 10.1016/j.jbiomech.2016.02.009 PubMed
Tong J, Xin YF, Zhang Z, Xu X, Li T (2023) Effect of hypertension on the delamination and tensile strength of ascending thoracic aortic aneurysm with a focus on right lateral region. J Biomech 154:111615. 10.1016/j.jbiomech.2023.111615 PubMed
Truesdell C, Noll W (2004) The non-linear field theories of mechanics. Springer, Berlin Heidelberg
Tsamis A, Phillippi JA, Koch RG et al (2013) Fiber micro-architecture in the longitudinal-radial and circumferential-radial planes of ascending thoracic aortic aneurysm media. J Biomech 46:2787–2794. 10.1016/j.jbiomech.2013.09.003 PubMed PMC
Valenta J, Vitek K, Cihak R, Konvickova S, Sochor M, Horny L (2002) Age related constitutive laws and stress distribution in human main coronary arteries with reference to residual strain. Bio-Med Mater Eng 12(2):121–134 PubMed
van Baardwijk C, Roach MR (1987) Factors in the propagation of aortic dissections in canine thoracic aortas. J Biomech 20(1):67–73. 10.1016/0021-9290(87)90268-5 PubMed
Wang L, Hill NA, Roper SM, Luo X (2018) Modelling peeling- and pressure-driven propagation of arterial dissection. J Eng Math 109(1):227–238. 10.1007/s10665-017-9948-0 PubMed PMC
Wang R, Yu X, Gkousioudi A, Zhang Y (2021a) Effect of glycation on interlamellar bonding of arterial elastin. Exp Mech 61:81–94. 10.1007/s11340-020-00644-y PubMed PMC
Wang R, Yu X, Zhang Y (2021b) Mechanical and structural contributions of elastin and collagen fibers to interlamellar bonding in the arterial wall. Biomech Model Mechanobiol 20:93–106. 10.1007/s10237-020-01370-z PubMed PMC
Wang X, Carpenter HJ, Ghayesh MH, Kotousov A, Zander AC, Amabili M, Psaltis PJ (2023) A review on the biomechanical behaviour of the aorta. J Mech Behav Biomed Mater 144:105922. 10.1016/j.jmbbm.2023.105922 PubMed
Weisbecker H, Unterberger MJ, Holzapfel GA (2015) Constitutive modelling of arteries considering fibre recruitment and three-dimensional fibre distribution. J R Soc Interface. 10.1098/rsif.2015.0111 PubMed PMC
Wells GN, de Borst R, Sluys LJ (2002) A consistent geometrically non-linear approach for delamination. Int J Numer Meth Eng 54(9):1333–1357
Wolinsky H, Glagov S (1967) A lamellar unit of aortic medial structure and function in mammals. Circ Res 20(1):99–111. 10.1161/01.res.20.1.99 PubMed
Xuan Y, Wang Z, Guccione JM (2023) Regional and directional delamination properties of healthy human ascending aorta and sinotubular junction. J Mech Behav Biomed Mater. 10.1016/j.jmbbm.2022.105603 PubMed
Yu X, Suki B, Zhang Y (2020) Avalanches and power law behavior in aortic dissection propagation. Sci Adv. 10.1126/sciadv.aaz1173 PubMed PMC
Zehnder AT (2012) Fracture mechniacs. In: Pfeiffer F, Wriggers P (eds) Lecture notes in applied and computational mechanics. Springer Science+Business Media, Cham