The Effect of Lipotoxicity on Renal Dysfunction in a Nonobese Rat Model of Metabolic Syndrome: A Urinary Proteomic Approach
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31886287
PubMed Central
PMC6925916
DOI
10.1155/2019/8712979
Knihovny.cz E-zdroje
- MeSH
- albuminurie etiologie moč MeSH
- analýza moči MeSH
- biologické markery krev moč MeSH
- časná diagnóza MeSH
- časové faktory MeSH
- cytokiny moč MeSH
- epidermální růstový faktor moč MeSH
- hypertriglyceridemie krev komplikace genetika moč MeSH
- lipidy krev MeSH
- mediátory zánětu moč MeSH
- metabolický syndrom krev komplikace genetika moč MeSH
- modely nemocí na zvířatech MeSH
- nemoci ledvin krev etiologie moč MeSH
- potkani transgenní MeSH
- potkani Wistar MeSH
- prediktivní hodnota testů MeSH
- proteomika * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- cytokiny MeSH
- epidermální růstový faktor MeSH
- lipidy MeSH
- mediátory zánětu MeSH
INTRODUCTION: The development of metabolic syndrome-associated renal dysfunction is exacerbated by a number of factors including dyslipidemia, ectopic deposition of lipids and their toxic metabolites, impairment of lipid metabolism, and insulin resistance. Renal dysfunction is also affected by the production of proinflammatory and profibrotic factors secreted from adipose tissue, which can in turn directly impair kidney cells and potentiate insulin resistance. In this study, we investigated the manifestation of renal lipid accumulation and its effect on renal dysfunction in a model of metabolic syndrome-the hereditary hypertriglyceridemic rat (HHTg)-by assessing microalbuminuria and targeted urinary proteomics. Male Wistar control rats and HHTg rats were fed a standard diet and observed over the course of ageing at 3, 12, and 20 months of age. RESULTS: Chronically elevated levels of triglycerides in HHTg rats were associated with increased levels of NEFA during OGTT and over a period of 24 hours (+80%, P < 0.01). HHTg animals exhibited qualitative changes in NEFA fatty acid composition, represented by an increased proportion of saturated fatty acids (P < 0.05) and a decreased proportion of n-3 PUFA (P < 0.01). Ectopic lipid deposition in the kidneys of HHTg rats-triglycerides (+30%) and cholesterol (+10%)-was associated with markedly elevated microalbuminuria as ageing increased, despite the absence of microalbuminuria at the young age of 3 months in these animals. According to targeted proteomic analysis, 3-month-old HHTg rats (in comparison to age-matched controls) exhibited increased urinary secretion of proinflammatory parameters (MCP-1, IL-6, IL-8, P < 0.01) and decreased urinary secretion of epidermal growth factor (EGF, P < 0.01) before manifestation of microalbuminuria. Elevation in the urinary secretion of inflammatory cytokines can be affected by increased relative expression of MCP-1 in the renal cortex (P < 0.05). CONCLUSIONS: Our results confirm dyslipidemia and ectopic lipid accumulation to be key contributors in the development of metabolic syndrome-associated renal dysfunction. Assessing urinary secretion of proinflammatory cytokines and epidermal growth factor can help in detecting early development of metabolic syndrome-associated renal dysfunction.
Czech University of Life Sciences 16500 Prague Czech Republic
Department of Chemistry University College London London WC1H 0AJ UK
Zobrazit více v PubMed
Huh J. H., Yadav D., Kim J. S., et al. An association of metabolic syndrome and chronic kidney disease from a 10-year prospective cohort study. Metabolism. 2017;67:54–61. doi: 10.1016/j.metabol.2016.11.003. PubMed DOI
Zhang X., Lerman L. O. The metabolic syndrome and chronic kidney disease. Translational Research. 2017;183:14–25. doi: 10.1016/j.trsl.2016.12.004. PubMed DOI PMC
Shi M., Ma L., Fu P. . Role of fatty acid binding protein 4 (FABP4) in kidney disease. Current Medicinal Chemistry. 2018;25 doi: 10.2174/0929867325666181008154622. PubMed DOI
Guebre-Egziabher F., Alix P. M., Koppe L., et al. Ectopic lipid accumulation: a potential cause for metabolic disturbances and a contributor to the alteration of kidney function. Biochimie. 2013;95(11):1971–1979. doi: 10.1016/j.biochi.2013.07.017. PubMed DOI
Escasany E., Izquierdo-Lahuerta A., Medina-Gomez G. Underlying mechanisms of renal lipotoxicity in obesity. Nephron. 2019;143(1):28–32. doi: 10.1159/000494694. PubMed DOI
Sieber J., Jehle A. W. Free fatty acids and their metabolism affect function and survival of podocytes. Frontiers in Endocrinology. 2014;5 doi: 10.3389/fendo.2014.00186. PubMed DOI PMC
Macisaac R. J., Ekinci E. I., Jerums G. Markers of and risk factors for the development and progression of diabetic kidney disease. American Journal of Kidney Diseases. 2014;63(2):S39–S62. doi: 10.1053/j.ajkd.2013.10.048. PubMed DOI
Hou N., Han F., Wang M., et al. Perirenal fat associated with microalbuminuria in obese rats. International Urology and Nephrology. 2014;46(4):839–845. doi: 10.1007/s11255-014-0656-7. PubMed DOI
Lindhardt M., Persson F., Zürbig P., et al. Urinary proteomics predict onset of microalbuminuria in normoalbuminuric type 2 diabetic patients, a sub-study of the DIRECT-Protect 2 study. Nephrology Dialysis Transplantation. 2017;32(11):gfw292–gf1873. doi: 10.1093/ndt/gfw292. PubMed DOI
Vrana A., Kazdova L. The hereditary hypertriglyceridemic nonobese rat: an experimental model of human hypertriglyceridemia. Transplantation Proceedings. 1990;22(6):p. 2579. PubMed
Kahleova H., Malinska H., Kazdova L., et al. The effect of meal frequency on the fatty acid composition of serum phospholipids in patients with type 2 diabetes. Journal of the American College of Nutrition. 2015;35(4):317–325. doi: 10.1080/07315724.2015.1046197. PubMed DOI
Contois J. H., Hartigan C., Rao L. V., Snyder L. M., Thompson M. J. Analytical validation of an HPLC assay for urinary albumin. Clinica Chimica Acta. 2006;367(1-2):150–155. doi: 10.1016/j.cca.2005.12.002. PubMed DOI
Kačerová T., Novotný P., Boroň J., Kačer P. Molecular diagnostics of pulmonary diseases based on analysis of exhaled breath condensate. In: Ghousia G., editor. Biomarker: Indicator of Abnormal Physiological Process. Zagreb, Croatia: InTech Publishing; 2018. pp. 141–168. DOI
Neprasova M., Maixnerova D., Novak J., et al. Toward noninvasive diagnosis of IgA nephropathy: a pilot urinary metabolomic and proteomic study. Disease Markers. 2016;2016(9):9. doi: 10.1155/2016/3650909.3650909 PubMed DOI PMC
Lennon R., Pons D., Sabin M. A., et al. Saturated fatty acids induce insulin resistance in human podocytes: implications for diabetic nephropathy. Nephrology Dialysis Transplantation. 2009;24(11):3288–3296. doi: 10.1093/ndt/gfp302. PubMed DOI PMC
Mima A., Ohshiro Y., Kitada M., et al. Glomerular-specific protein kinase C-β-induced insulin receptor substrate-1 dysfunction and insulin resistance in rat models of diabetes and obesity. Kidney International. 2011;79(8):883–896. doi: 10.1038/ki.2010.526. PubMed DOI PMC
Klein-Platat C., Drai J., Oujaa M., Schlienger J. L., Simon C. Plasma fatty acid composition is associated with the metabolic syndrome and low-grade inflammation in overweight adolescents. The American Journal of Clinical Nutrition. 2005;82(6):1178–1184. doi: 10.1093/ajcn/82.6.1178. PubMed DOI
Floegel A., Stefan N., Yu Z., et al. Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes. 2013;62(2):639–648. doi: 10.2337/db12-0495. PubMed DOI PMC
Bobulescu I. A. Renal lipid metabolism and lipotoxicity. Current Opinion in Nephrology and Hypertension. 2010;19(4):393–402. doi: 10.1097/MNH.0b013e32833aa4ac. PubMed DOI PMC
Izquierdo-Lahuerta A., Martinez-Garcia C., Medina-Gomez G. Lipotoxicity as a trigger factor of renal disease. Journal of Nephrology. 2016;29(5):603–610. doi: 10.1007/s40620-016-0278-5. PubMed DOI
Iwai T., Kume S., Chin-Kanasaki M., et al. Stearoyl-CoA desaturase-1 protects cells against lipotoxicity-mediated apoptosis in proximal tubular cells. International Journal of Molecular Sciences. 2016;17(11):p. 1868. doi: 10.3390/ijms17111868. PubMed DOI PMC
Fan Y., Lee K., Wang N., He J. C. The role of endoplasmic reticulum stress in diabetic nephropathy. Current Diabetes Reports. 2017;17(3) doi: 10.1007/s11892-017-0842-y. PubMed DOI
Zicha J., Pecháňová O., Čačányiová S., et al. Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiological Research. 2006;55(1):S49–S63. PubMed
Sarafidis P. A., Ruilope L. M. Insulin resistance, microalbuminuria, and chronic kidney disease. Current Hypertension Reports. 2008;10(4):249–251. doi: 10.1007/s11906-008-0046-6. PubMed DOI
Raikou V., Gavriil S. Metabolic syndrome and chronic renal disease. Diseases. 2018;6(1):p. 12. doi: 10.3390/diseases6010012. PubMed DOI PMC
Fioretto P., Steffes M. W., Mauer M. Glomerular structure in nonproteinuric IDDM patients with various levels of albuminuria. Diabetes. 1994;43(11):1358–1364. doi: 10.2337/diab.43.11.1358. PubMed DOI
Cherney D. Z., Scholey J. W., Daneman D., et al. Urinary markers of renal inflammation in adolescents with type 1 diabetes mellitus and normoalbuminuria. Diabetic Medicine. 2012;29(10):1297–1302. doi: 10.1111/j.1464-5491.2012.03651.x. PubMed DOI
Nadkarni G. N., Rao V., Ismail-Beigi F., et al. Association of urinary biomarkers of inflammation, injury, and fibrosis with renal function decline: the ACCORD trial. Clinical Journal of the American Society of Nephrology. 2016;11(8):1343–1352. doi: 10.2215/CJN.12051115. PubMed DOI PMC
Decleves A. E., Sharma K. Obesity and kidney disease: differential effects of obesity on adipose tissue and kidney inflammation and fibrosis. Current Opinion in Nephrology and Hypertension. 2015;24(1):28–36. doi: 10.1097/MNH.0000000000000087. PubMed DOI PMC
Verhave J. C., Bouchard J., Goupil R., et al. Clinical value of inflammatory urinary biomarkers in overt diabetic nephropathy: a prospective study. Diabetes Research and Clinical Practice. 2013;101(3):333–340. doi: 10.1016/j.diabres.2013.07.006. PubMed DOI
Satirapoj B., Dispan R., Radinahamed P., Kitiyakara C. Urinary epidermal growth factor, monocyte chemoattractant protein-1 or their ratio as predictors for rapid loss of renal function in type 2 diabetic patients with diabetic kidney disease. BMC Nephrology. 2018;19(1):p. 246. doi: 10.1186/s12882-018-1043-x. PubMed DOI PMC
Torres D. D., Rossini M., Manno C., et al. The ratio of epidermal growth factor to monocyte chemotactic peptide-1 in the urine predicts renal prognosis in IgA nephropathy. Kidney International. 2008;73(3):327–333. doi: 10.1038/sj.ki.5002621. PubMed DOI
Betz B. B., Jenks S. J., Cronshaw A. D., et al. Urinary peptidomics in a rodent model of diabetic nephropathy highlights epidermal growth factor as a biomarker for renal deterioration in patients with type 2 diabetes. Kidney International. 2016;89(5):1125–1135. doi: 10.1016/j.kint.2016.01.015. PubMed DOI
Van J. A. D., Scholey J. W., Konvalinka A. Insights into diabetic kidney disease using urinary proteomics and bioinformatics. Journal of the American Society of Nephrology. 2017;28(4):1050–1061. doi: 10.1681/ASN.2016091018. PubMed DOI PMC
Rehman K., Akash M. S. H., Liaqat A., Kamal S., Qadir M. I., Rasul A. Role of interleukin-6 in development of insulin resistance and type 2 diabetes mellitus. Critical Reviews in Eukaryotic Gene Expression. 2017;27(3):229–236. doi: 10.1615/CritRevEukaryotGeneExpr.2017019712. PubMed DOI
Lamacchia O., Nicastro V., Camarchio D., et al. Para- and perirenal fat thickness is an independent predictor of chronic kidney disease, increased renal resistance index and hyperuricaemia in type-2 diabetic patients. Nephrology Dialysis Transplantation. 2011;26(3):892–898. doi: 10.1093/ndt/gfq522. PubMed DOI
Sun X., Han F., Miao W., Hou N., Cao Z., Zhang G. Sonographic evaluation of para- and perirenal fat thickness is an independent predictor of early kidney damage in obese patients. International Urology and Nephrology. 2013;45(6):1589–1595. doi: 10.1007/s11255-013-0404-4. PubMed DOI
Martínez-García C., Izquierdo-Lahuerta A., Vivas Y., et al. Renal lipotoxicity-associated inflammation and insulin resistance affects actin cytoskeleton organization in podocytes. PLoS One. 2015;10(11):p. e0142291. doi: 10.1371/journal.pone.0142291. PubMed DOI PMC