Beneficial Effect of Fenofibrate in Combination with Silymarin on Parameters of Hereditary Hypertriglyceridemia-Induced Disorders in an Animal Model of Metabolic Syndrome

. 2025 Jan 16 ; 13 (1) : . [epub] 20250116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39857794

Grantová podpora
IGA_LF_2024_006 Internal grant agency of Palacky University Olomouc
IKEM-IN00023001 Czech Science Foundation

Background: Hypertriglyceridemia has serious health risks such as cardiovascular disease, type 2 diabetes mellitus, nephropathy, and others. Fenofibrate is an effective hypolipidemic drug, but its benefits for ameliorating disorders associated with hypertriglyceridemia failed to be proven in clinical trials. Methods: To search for possible causes of this situation and possibilities of their favorable influence, we tested the effect of FF monotherapy and the combination of fenofibrate with silymarin on metabolic disorders in a unique model of hereditary hypertriglyceridemic rats (HHTg). Results: Fenofibrate treatment (100 mg/kg BW/day for four weeks) significantly decreased serum levels of triglyceride, (-77%) and free fatty acids (-29%), the hepatic accumulation of triglycerides, and the expression of genes encoding transcription factors involved in lipid metabolism (Srebf2, Nr1h4. Rxrα, and Slco1a1). In contrast, the hypertriglyceridemia-induced ectopic storage of lipids in muscles, the heart, and kidneys reduced glucose utilization in muscles and was not affected. In addition, fenofibrate reduced the activity of the antioxidant system, including Nrf2 expression (-35%) and increased lipoperoxidation in the liver and, to a lesser extent, in the kidneys and heart. Adding silymarin (micronized form, 600 mg/kg BW/day) to fenofibrate therapy increased the synthesis of glycogen in muscles, (+36%) and reduced hyperinsulinemia (-34%). In the liver, it increased the activity of the antioxidant system, including PON-1 activity and Nrf2 expression, and reduced the formation of lipoperoxides. The beneficial effect of combination therapy on the parameters of oxidative stress and lipoperoxidation was also observed, to a lesser extent, in the heart and kidneys. Conclusions: Our results suggest the potential beneficial use of the combination of FF with SLM in the treatment of hypertriglyceridemia-induced metabolic disorders.

Zobrazit více v PubMed

Aggarwal R., Bhatt D.L., Rodriguez F., Yeh R.W., Wadhera R.K. Trends in Lipid Concentrations and Lipid Control Among US Adults, 2007–2018. JAMA. 2022;328:737–745. doi: 10.1001/jama.2022.12567. PubMed DOI PMC

Fan W., Philip S., Granowitz C., Toth P.P., Wong N.D. Hypertriglyceridemia in Statin-Treated US Adults: The National Health and Nutrition Examination Survey. J. Clin. Lipidol. 2019;13:100–108. doi: 10.1016/j.jacl.2018.11.008. PubMed DOI

Dron J.S., Wang J., Cao H., McIntyre A.D., Iacocca M.A., Menard J.R., Movsesyan I., Malloy M.J., Pullinger C.R., Kane J.P., et al. Severe Hypertriglyceridemia Is Primarily Polygenic. J. Clin. Lipidol. 2019;13:80–88. doi: 10.1016/j.jacl.2018.10.006. PubMed DOI

Hegele R.A., Ginsberg H.N., Chapman M.J., Nordestgaard B.G., Kuivenhoven J.A., Averna M., Borén J., Bruckert E., Catapano A.L., Descamps O.S., et al. The Polygenic Nature of Hypertriglyceridaemia: Implications for Definition, Diagnosis, and Management. Lancet Diabetes Endocrinol. 2013;2:655. doi: 10.1016/S2213-8587(13)70191-8. PubMed DOI PMC

Duran E.K., Pradhan A.D. Triglyceride-Rich Lipoprotein Remnants and Cardiovascular Disease. Clin. Chem. 2021;67:183–196. doi: 10.1093/clinchem/hvaa296. PubMed DOI

Tybjærg-Hansen A., Nordestgaard B.G., Christoffersen M. Triglyceride-Rich Remnant Lipoproteins Are More Atherogenic than LDL per Particle: Is This Important? Eur. Heart J. 2023;44:4196–4198. doi: 10.1093/eurheartj/ehad419. PubMed DOI

Raposeiras-Roubin S., Rosselló X., Oliva B., Fernández-Friera L., Mendiguren J.M., Andrés V., Bueno H., Sanz J., Martínez de Vega V., Abu-Assi E., et al. Triglycerides and Residual Atherosclerotic Risk. J. Am. Coll. Cardiol. 2021;77:3031–3041. doi: 10.1016/j.jacc.2021.04.059. PubMed DOI PMC

Peng X., Wu H. Inflammatory Links Between Hypertriglyceridemia and Atherogenesis. Curr. Atheroscler. Rep. 2022;24:297–306. doi: 10.1007/s11883-022-01006-w. PubMed DOI PMC

Wu X., Wang Y., Jia Y., Liu J., Wang G. Risk Factors for Nonalcoholic Fatty Liver Disease with Different Insulin Resistance in a Nonobese Chinese Population. J. Diabetes Res. 2022;2022:9060405. doi: 10.1155/2022/9060405. PubMed DOI PMC

Nakamura M., Sadoshima J. Cardiomyopathy in Obesity, Insulin Resistance and Diabetes. J. Physiol. 2020;598:2977–2993. doi: 10.1113/JP276747. PubMed DOI

Samuel V.T., Shulman G.I. The Pathogenesis of Insulin Resistance: Integrating Signaling Pathways and Substrate Flux. J. Clin. Investig. 2016;126:12–22. doi: 10.1172/JCI77812. PubMed DOI PMC

Pontremoli R., Desideri G., Arca M., Temporelli P.L., Perrone V., Dovizio M., Borghi C., Esposti L.D. Hypertriglyceridemia Is Associated with Decline of Estimated Glomerular Filtration Rate and Risk of End-Stage Kidney Disease in a Real-Word Italian Cohort: Evidence from the TG-RENAL Study. Eur. J. Intern. Med. 2023;111:90–96. doi: 10.1016/j.ejim.2023.02.019. PubMed DOI

McCullough P.A., Ahmed A.B., Zughaib M.T., Glanz E.D., Di Loreto M.J. Treatment of Hypertriglyceridemia with Fibric Acid Derivatives: Impact on Lipid Subfractions and Translation into a Reduction in Cardiovascular Events. Rev. Cardiovasc. Med. 2011;12:173–185. doi: 10.3909/ricm0619. PubMed DOI

Yu X.H., Zheng X.L., Tang C.K. Peroxisome Proliferator-Activated Receptor α in Lipid Metabolism and Atherosclerosis. Adv. Clin. Chem. 2015;71:171–203. doi: 10.1016/BS.ACC.2015.06.005. PubMed DOI

Keech A., Simes R.J., Barter P., Best J., Scott R., Taskinen M.R., Forder P., Pillai A., Davis T., Glasziou P., et al. Effects of Long-Term Fenofibrate Therapy on Cardiovascular Events in 9795 People with Type 2 Diabetes Mellitus (the FIELD Study): Randomised Controlled Trial. Lancet. 2005;366:1849–1861. doi: 10.1016/S1567-5688(06)81349-8. PubMed DOI

Ginsberg H.N., Elam M.B., Lovato L.C., Crouse J.R., III, Leiter L.A., Linz P., Friede-wald W.T., Buse J.B., Gerstein H.C., Probst-field J., et al. Effects of Combination Lipid Therapy in Type 2 Diabetes Mellitus. N. Engl. J. Med. 2010;362:1563–1574. doi: 10.1056/NEJMOA1001282. PubMed DOI PMC

Das Pradhan A., Glynn R.J., Fruchart J.-C., MacFadyen J.G., Zaharris E.S., Everett B.M., Campbell S.E., Oshima R., Amarenco P., Blom D.J., et al. Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. N. Engl. J. Med. 2022;387:1923–1934. doi: 10.1056/NEJMoa2210645. PubMed DOI

Perreault L., Bergman B.C., Hunerdosse D.M., Howard D.J., Eckel R.H. Fenofibrate Administration Does Not Affect Muscle Triglyceride Concentration or Insulin Sensitivity in Humans. Metabolism. 2011;60:1107–1114. doi: 10.1016/j.metabol.2010.12.003. PubMed DOI PMC

Belfort R., Berria R., Cornell J., Cusi K. Fenofibrate Reduces Systemic Inflammation Markers Independent of Its Effects on Lipid and Glucose Metabolism in Patients with the Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2010;95:829–836. doi: 10.1210/jc.2009-1487. PubMed DOI PMC

Kostapanos M.S., Florentin M., Elisaf M.S. Fenofibrate and the Kidney: An Overview. Eur. J. Clin. Investig. 2013;43:522–531. doi: 10.1111/eci.12068. PubMed DOI

Ahmad J., Odin J.A., Hayashi P.H., Chalasani N., Fontana R.J., Barnhart H., Cirulli E.T., Kleiner D.E., Hoofnagle J.H. Identification and Characterization of Fenofibrate-Induced Liver Injury. Dig. Dis. Sci. 2017;62:3596–3604. doi: 10.1007/s10620-017-4812-7. PubMed DOI PMC

Škop V., Trnovská J., Oliyarnyk O., Marková I., Malínská H., Kazdová L., Zídek V., Landa V., Mlejnek P., Šimáková M., et al. Hepatotoxic Effects of Fenofibrate in Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein. Physiol. Res. 2016;65:891–899. doi: 10.33549/physiolres.933304. PubMed DOI

Miller M. Pemafibrate and Other Triglyceride-Lowering Therapies to Reduce Risk of Cardiovascular and Metabolic Disease. Curr. Opin. Cardiol. 2024;39:286–291. doi: 10.1097/HCO.0000000000001136. PubMed DOI PMC

Škottová N., Kazdová L., Oliyarnyk O., Večeřa R., Sobolová L., Ulrichová J. Phenolics-Rich Extracts from Silybum marianum and Prunella vulgaris Reduce a High-Sucrose Diet Induced Oxidative Stress in Hereditary Hypertriglyceridemic Rats. Pharmacol. Res. 2004;50:123–130. doi: 10.1016/j.phrs.2003.12.013. PubMed DOI

Tajmohammadi A., Razavi B.M., Hosseinzadeh H. Silybum marianum (Milk Thistle) and Its Main Constituent, Silymarin, as a Potential Therapeutic Plant in Metabolic Syndrome: A Review. Phytother. Res. 2018;32:1933–1949. doi: 10.1002/ptr.6153. PubMed DOI

Poruba M., Kazdová L., Oliyarnyk O., Malinská H., Matusková Z., Tozzi Di Angelo I., Skop V., Vecera R. Improvement Bioavailability of Silymarin Ameliorates Severe Dyslipidemia Associated with Metabolic Syndrome. Xenobiotica. 2015;45:751–756. doi: 10.3109/00498254.2015.1010633. PubMed DOI

Wadhwa K., Pahwa R., Kumar M., Kumar S., Sharma P.C., Singh G., Verma R., Mittal V., Singh I., Kaushik D., et al. Mechanistic Insights into the Pharmacological Significance of Silymarin. Molecules. 2022;27:5327. doi: 10.3390/molecules27165327. PubMed DOI PMC

Mengs U., Torsten Pohl R.-, Mitchell T. Legalon® SIL: The Antidote of Choice in Patients with Acute Hepatotoxicity from Amatoxin Poisoning. Curr. Pharm. Biotechnol. 2012;13:1964–1970. doi: 10.2174/138920112802273353. PubMed DOI PMC

Ferenci P., Beinhardt S. Silibinin: An Old Drug in the High Tech Era of Liver Transplantation. J. Hepatol. 2013;58:409–411. doi: 10.1016/j.jhep.2012.11.030. PubMed DOI

Vrána A., Kazdová L. The Hereditary Hypertriglyceridemic Nonobese Rat: An Experimental Model of Human Hypertriglyceridemia. Transplant. Proc. 1990;22:2579. PubMed

Kazdová L., Žák A., Vrána A. Increased Lipoprotein Oxidability and Aortic Lipid Peroxidation in an Experimental Model of Insulin Resistance Syndromea. Ann. N. Y Acad. Sci. 1997;827:521–525. doi: 10.1111/j.1749-6632.1997.tb51863.x. PubMed DOI

Zicha J., Pecháňová O., Čačányiová S., Cebová M., Kristek F., Török J., Šimko F., Dobešová Z., Kuneš J. Hereditary Hypertriglyceridemic Rat: A Suitable Model of Cardiovascular Disease and Metabolic Syndrome? Physiol. Res. 2006;55:49–63. doi: 10.33549/physiolres.930000.55.S1.49. PubMed DOI

Markova I., Miklankova D., Hüttl M., Kacer P., Skibova J., Kucera J., Sedlacek R., Kacerova T., Kazdova L., Malinska H. The Effect of Lipotoxicity on Renal Dysfunction in a Nonobese Rat Model of Metabolic Syndrome: A Urinary Proteomic Approach. J. Diabetes Res. 2019;2019:8712979. doi: 10.1155/2019/8712979. PubMed DOI PMC

Malinska H., Hüttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated Linoleic Acid Reduces Visceral and Ectopic Lipid Accumulation and Insulin Resistance in Chronic Severe Hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI

Malínská H., Oliyarnyk O., Hubová M., Zídek V., Landa V., Šimáková M., Mlejnek P., Kazdová L., Kurtz T.W., Pravenec M. Increased Liver Oxidative Stress and Altered PUFA Metabolism Precede Development of Non-Alcoholic Steatohepatitis in SREBP-1a Transgenic Spontaneously Hypertensive Rats with Genetic Predisposition to Hepatic Steatosis. Mol. Cell Biochem. 2010;335:119–125. doi: 10.1007/s11010-009-0248-5. PubMed DOI

Pravenec M., Kazdová L., Maxová M., Zídek V., Mlejnek P., Šimáková M., Kurtz T.W. Long-Term Pioglitazone Treatment Enhances Lipolysis in Rat Adipose Tissue. Int. J. Obes. 2008;32:1848–1853. doi: 10.1038/ijo.2008.192. PubMed DOI

Pravenec M., Kazdová L., Landa V., Zídek V., Mlejnek P., Jansa P., Wang J., Qi N., Kurtz T.W. Transgenic and Recombinant Resistin Impair Skeletal Muscle Glucose Metabolism in the Spontaneously Hypertensive Rat. J. Biol. Chem. 2003;278:45209–45215. doi: 10.1074/jbc.M304869200. PubMed DOI

Qi N., Kazdova L., Zidek V., Landa V., Kren V., Pershadsingh H.A., St. Lezin E., Abumrad N.A., Pravenec M., Kurtz T.W. Pharmacogenetic Evidence That Cd36Is a Key Determinant of the Metabolic Effects of Pioglitazone. J. Biol. Chem. 2002;277:48501–48507. doi: 10.1074/jbc.M206655200. PubMed DOI

Ramnanan C.J., Edgerton D.S., Rivera N., Irimia-Dominguez J., Farmer B., Neal D.W., Lautz M., Donahue E.P., Meyer C.M., Roach P.J., et al. Molecular Characterization of Insulin-Mediated Suppression of Hepatic Glucose Production in Vivo. Diabetes. 2010;59:1302–1311. doi: 10.2337/db09-1625. PubMed DOI PMC

Canfora I., Pierno S. Hypertriglyceridemia Therapy: Past, Present and Future Perspectives. Int. J. Mol. Sci. 2024;25:9727. doi: 10.3390/ijms25179727. PubMed DOI PMC

Anderlová K., Doležalová R., Housová J., Bošanská L., Haluzíková D., Křemen J., Škrha J., Haluzík M. Influence of PPAR-Alpha Agonist Fenofibrate on Insulin Sensitivity and Selected Adipose Tissue-Derived Hormones in Obese Women with Type 2 Diabetes. Physiol. Res. 2007;56:579–586. doi: 10.33549/physiolres.931058. PubMed DOI

Abbasi F., Chen Y.D.I., Farin H.M.F., Lamendola C., Reaven G.M. Comparison of Three Treatment Approaches to Decreasing Cardiovascular Disease Risk in Nondiabetic Insulin-Resistant Dyslipidemic Subjects. Am. J. Cardiol. 2008;102:64–69. doi: 10.1016/j.amjcard.2008.02.097. PubMed DOI PMC

Borén J., Taskinen M.R., Olofsson S.O., Levin M. Ectopic Lipid Storage and Insulin Resistance: A Harmful Relationship. J. Intern. Med. 2013;274:25–40. doi: 10.1111/joim.12071. PubMed DOI

Gröne E.F., Walli A.K., Gröne H.J., Miller B., Seidel D. The Role of Lipids in Nephrosclerosis and Glomerulosclerosis. Atherosclerosis. 1994;107:1–13. doi: 10.1016/0021-9150(94)90136-8. PubMed DOI

Saric M., Kronzon I. Aortic Atherosclerosis and Embolic Events. Curr. Cardiol. Rep. 2012;14:342–349. doi: 10.1007/s11886-012-0261-2. PubMed DOI

Sarma S., Carrick-Ranson G., Fujimoto N., Adams-Huet B., Bhella P.S., Hastings J.L., Shafer K.M., Shibata S., Boyd K., Palmer D., et al. Effects of Age and Aerobic Fitness on Myocardial Lipid Content. Circ. Cardiovasc. Imaging. 2013;6:1048–1055. doi: 10.1161/CIRCIMAGING.113.000565. PubMed DOI PMC

Lee H.J., Choi S.S., Park M.K., An Y.J., Seo S.Y., Kim M.C., Hong S.H., Hwang T.H., Kang D.Y., Garber A.J., et al. Fenofibrate Lowers Abdominal and Skeletal Adiposity and Improves Insulin Sensitivity in OLETF Rats. Biochem. Biophys. Res. Commun. 2002;296:293–299. doi: 10.1016/S0006-291X(02)00822-7. PubMed DOI

Włodarski A., Strycharz J., Wróblewski A., Kasznicki J., Drzewoski J., Śliwińska A. The Role of MicroRNAs in Metabolic Syndrome-Related Oxidative Stress. Int. J. Mol. Sci. 2020;21:6902. doi: 10.3390/ijms21186902. PubMed DOI PMC

Olukman M., Sezer E.D., Ülker S., Szmen E.Y., Çnar G.M. Fenofibrate Treatment Enhances Antioxidant Status and Attenuates Endothelial Dysfunction in Streptozotocin-Induced Diabetic Rats. Exp. Diabetes Res. 2010;2010:828531. doi: 10.1155/2010/828531. PubMed DOI PMC

Abd El-Haleim E.A., Bahgat A.K., Saleh S. Resveratrol and Fenofibrate Ameliorate Fructose-Induced Nonalcoholic Steatohepatitis by Modulation of Genes Expression. World J. Gastroenterol. 2016;22:2931–2948. doi: 10.3748/wjg.v22.i10.2931. PubMed DOI PMC

Shunmoogam N., Naidoo P., Chilton R. Paraoxonase (PON)-1: A Brief Overview on Genetics, Structure, Polymorphisms and Clinical Relevance. Vasc. Health Risk Manag. 2018;14:137–143. doi: 10.2147/VHRM.S165173. PubMed DOI PMC

Kowalska K., Socha E., Milnerowicz H. Review: The Role of Paraoxonase in Cardiovascular Diseases. Ann. Clin. Lab. Sci. 2015;45:226–233. PubMed

Montagner A., Polizzi A., Fouché E., Ducheix S., Lippi Y., Lasserre F., Barquissau V., Régnier M., Lukowicz C., Benhamed F., et al. Liver PPARα Is Crucial for Whole-Body Fatty Acid Homeostasis and Is Protective against NAFLD. Gut. 2016;65:1202–1214. doi: 10.1136/gutjnl-2015-310798. PubMed DOI PMC

MacDonald-Ramos K., Michán L., Martínez-Ibarra A., Cerbón M. Silymarin Is an Ally against Insulin Resistance: A Review. Ann. Hepatol. 2021;23:100255. doi: 10.1016/j.aohep.2020.08.072. PubMed DOI

Gillessen A., Schmidt H.H.J. Silymarin as Supportive Treatment in Liver Diseases: A Narrative Review. Adv. Ther. 2020;37:1279–1301. doi: 10.1007/s12325-020-01251-y. PubMed DOI PMC

Surai P.F. Silymarin as a Natural Antioxidant: An Overview of the Current Evidence and Perspectives. Antioxidants. 2015;4:204–247. doi: 10.3390/antiox4010204. PubMed DOI PMC

Bellavite P., Fazio S., Affuso F. A Descriptive Review of the Action Mechanisms of Berberine, Quercetin and Silymarin on Insulin Resistance/Hyperinsulinemia and Cardiovascular Prevention. Molecules. 2023;28:4491. doi: 10.3390/molecules28114491. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...