Metformin Affects Cardiac Arachidonic Acid Metabolism and Cardiac Lipid Metabolite Storage in a Prediabetic Rat Model

. 2021 Jul 19 ; 22 (14) : . [epub] 20210719

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34299301

Grantová podpora
IN 00023001 Ministerstvo Zdravotnictví Ceské Republiky
IGA_LF_2021_013 Ministerstvo Zdravotnictví Ceské Republiky

Metformin can reduce cardiovascular risk independent of glycemic control. The mechanisms behind its non-glycemic benefits, which include decreased energy intake, lower blood pressure and improved lipid and fatty acid metabolism, are not fully understood. In our study, metformin treatment reduced myocardial accumulation of neutral lipids-triglycerides, cholesteryl esters and the lipotoxic intermediates-diacylglycerols and lysophosphatidylcholines in a prediabetic rat model (p < 0.001). We observed an association between decreased gene expression and SCD-1 activity (p < 0.05). In addition, metformin markedly improved phospholipid fatty acid composition in the myocardium, represented by decreased SFA profiles and increased n3-PUFA profiles. Known for its cardioprotective and anti-inflammatory properties, metformin also had positive effects on arachidonic acid metabolism and CYP-derived arachidonic acid metabolites. We also found an association between increased gene expression of the cardiac isoform CYP2c with increased 14,15-EET (p < 0.05) and markedly reduced 20-HETE (p < 0.001) in the myocardium. Based on these results, we conclude that metformin treatment reduces the lipogenic enzyme SCD-1 and the accumulation of the lipotoxic intermediates diacylglycerols and lysophosphatidylcholine. Increased CYP2c gene expression and beneficial effects on CYP-derived arachidonic acid metabolites in the myocardium can also be involved in cardioprotective effect of metformin.

Zobrazit více v PubMed

Grundy S.M. Metabolic syndrome update. Trends Cardiovasc. Med. 2016;26:364–373. doi: 10.1016/j.tcm.2015.10.004. PubMed DOI

Roberts C.K., Hevener A.L., Barnard R.J. Metabolic syndrome and insulin resistance: Underlying causes and modification by exercise training. Compr. Physiol. 2013;3:1–58. PubMed PMC

Weijers R.N. Lipid composition of cell membranes and its relevance in type 2 diabetes mellitus. Curr. Diabetes Rev. 2012;8:390–400. doi: 10.2174/157339912802083531. PubMed DOI PMC

AM A.L., Syed D.N., Ntambi J.M. Insights into Stearoyl-CoA Desaturase-1 Regulation of Systemic Metabolism. Trends Endocrinol. Metab. 2017;28:831–842. PubMed PMC

Tabaczar S., Wolosiewicz M., Filip A., Olichwier A., Dobrzyn P. The role of stearoyl-CoA desaturase in the regulation of cardiac metabolism. Postepy. Biochem. 2018;64:183–189. PubMed

Dobrzyn P., Bednarski T., Dobrzyn A. Metabolic reprogramming of the heart through stearoyl-CoA desaturase. Prog. Lipid. Res. 2015;57:1–12. doi: 10.1016/j.plipres.2014.11.003. PubMed DOI

Jamieson K.L., Endo T., Darwesh A.M., Samokhvalov V., Seubert J.M. Cytochrome P450-derived eicosanoids and heart function. Pharmacol. Ther. 2017;179:47–83. doi: 10.1016/j.pharmthera.2017.05.005. PubMed DOI

Grammatiki M., Sagar R., Ajjan R.A. Metformin: Is it still the first line in type 2 diabetes management algorithm? Curr. Pharm. Des. 2021;27:1061–1067. doi: 10.2174/1381612826666201222154616. PubMed DOI

Fujita Y., Inagaki N. Metformin: New Preparations and Nonglycemic Benefits. Curr. Diab. Rep. 2017;17:5. doi: 10.1007/s11892-017-0829-8. PubMed DOI

Jenkins A.J., Welsh P., Petrie J.R. Metformin, lipids and atherosclerosis prevention. Curr. Opin. Lipidol. 2018;29:346–353. doi: 10.1097/MOL.0000000000000532. PubMed DOI

Woo S.L., Xu H., Li H., Zhao Y., Hu X., Zhao J., Guo X., Guo T., Botchlett R., Qi T., et al. Metformin ameliorates hepatic steatosis and inflammation without altering adipose phenotype in diet-induced obesity. PLoS ONE. 2014;9:e91111. doi: 10.1371/journal.pone.0091111. PubMed DOI PMC

Marchesini G., Brizi M., Bianchi G., Tomassetti S., Zoli M., Melchionda N. Metformin in non-alcoholic steatohepatitis. Lancet. 2001;358:893–894. doi: 10.1016/S0140-6736(01)06042-1. PubMed DOI

Geerling J.J., Boon M.R., Van der Zon G.C., Van den Berg S.A., Van den Hoek A.M., Lombes M., Princen H.M., Havekes L.M., Rensen P.C., Guigas B. Metformin lowers plasma triglycerides by promoting VLDL-triglyceride clearance by brown adipose tissue in mice. Diabetes. 2014;63:880–891. doi: 10.2337/db13-0194. PubMed DOI

Loomba R., Lutchman G., Kleiner D.E., Ricks M., Feld J.J., Borg B.B., Modi A., Nagabhyru P., Sumner A.E., Liang T.J., et al. Clinical trial: Pilot study of metformin for the treatment of non-alcoholic steatohepatitis. Aliment. Pharmacol. Ther. 2009;29:172–182. doi: 10.1111/j.1365-2036.2008.03869.x. PubMed DOI PMC

Nesti L., Natali A. Metformin effects on the heart and the cardiovascular system: A review of experimental and clinical data. Nutr. Metab. Cardiovasc. Dis. 2017;27:657–669. doi: 10.1016/j.numecd.2017.04.009. PubMed DOI

Malinska H., Skop V., Trnovska J., Markova I., Svoboda P., Kazdova L., Haluzik M. Metformin attenuates myocardium dicarbonyl stress induced by chronic hypertriglyceridemia. Physiol. Res. 2018;67:181–189. doi: 10.33549/physiolres.933606. PubMed DOI

Bolivar S., Noriega L., Ortega S., Osorio E., Rosales W., Mendoza X., Mendoza-Torres E. Novel targets of metformin in cardioprotection: Beyond the effects mediated by AMPK. Curr. Pharm. Des. 2021;27:80–90. doi: 10.2174/1381612826666200509232610. PubMed DOI

Foretz M., Guigas B., Bertrand L., Pollak M., Viollet B. Metformin: From mechanisms of action to therapies. Cell. Metab. 2014;20:953–966. doi: 10.1016/j.cmet.2014.09.018. PubMed DOI

Zicha J., Pechanova O., Cacanyiova S., Cebova M., Kristek F., Torok J., Simko F., Dobesova Z., Kunes J. Hereditary hypertriglyceridemic rat: A suitable model of cardiovascular disease and metabolic syndrome? Physiol. Res. 2006;55(Suppl. 1):S49–S63. PubMed

Markova I., Miklankova D., Huttl M., Kacer P., Skibova J., Kucera J., Sedlacek R., Kacerova T., Kazdova L., Malinska H. The Effect of Lipotoxicity on Renal Dysfunction in a Nonobese Rat Model of Metabolic Syndrome: A Urinary Proteomic Approach. J. Diabetes. Res. 2019;2019:8712979. doi: 10.1155/2019/8712979. PubMed DOI PMC

Goldberg I.J., Trent C.M., Schulze P.C. Lipid metabolism and toxicity in the heart. Cell. Metab. 2012;15:805–812. doi: 10.1016/j.cmet.2012.04.006. PubMed DOI PMC

Ormazabal V., Nair S., Elfeky O., Aguayo C., Salomon C., Zuniga F.A. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc. Diabetol. 2018;17:122. doi: 10.1186/s12933-018-0762-4. PubMed DOI PMC

De Carvalho L.P., Tan S.H., Ow G., Tang Z., Ching J., Kovalik J.P., Poh S.C., Chin C.T., Richards A.M., Martinez E.C., et al. Plasma ceramides as prognostic biomarkers and their arterial and myocardial tissue correlates in acute myocardial infarction. JACC Basic. Transl. Sci. 2018;30:163–175. doi: 10.1016/j.jacbts.2017.12.005. PubMed DOI PMC

D’Souza K., Nzirorera C., Kienesberger P.C. Lipid metabolism and signaling in cardiac lipotoxicity. Biochim. Biophys. Acta. 2016;1861:1513–1524. doi: 10.1016/j.bbalip.2016.02.016. PubMed DOI

Matsui H., Yokoyama T., Sekiguchi K., Iijima D., Sunaga H., Maniwa M., Ueno M., Iso T., Arai M., Kurabayashi M. Stearoyl-CoA desaturase-1 (SCD1) augments saturated fatty acid-induced lipid accumulation and inhibits apoptosis in cardiac myocytes. PLoS ONE. 2012;7:e33283. doi: 10.1371/journal.pone.0033283. PubMed DOI PMC

Rizzo A.M., Montorfano G., Negroni M., Adorni L., Berselli P., Corsetto P., Wahle K., Berra B. A rapid method for determining arachidonic:eicosapentaenoic acid ratios in whole blood lipids: Correlation with erythrocyte membrane ratios and validation in a large Italian population of various ages and pathologies. Lipids. Health Dis. 2010;9:7. doi: 10.1186/1476-511X-9-7. PubMed DOI PMC

Nelson J.R., Raskin S. The eicosapentaenoic acid:arachidonic acid ratio and its clinical utility in cardiovascular disease. Postgrad. Med. 2019;131:268–277. doi: 10.1080/00325481.2019.1607414. PubMed DOI

Kim S.R., Jeon S.Y., Lee S.M. The association of cardiovascular risk factors with saturated fatty acids and fatty acid desaturase indices in erythrocyte in middle-aged Korean adults. Lipids Health Dis. 2015;14:133. doi: 10.1186/s12944-015-0135-x. PubMed DOI PMC

Svendsen K., Olsen T., Nordstrand Rusvik T.C., Ulven S.M., Holven K.B., Retterstol K., Telle-Hansen V.H. Fatty acid profile and estimated desaturase activities in whole blood are associated with metabolic health. Lipids Health Dis. 2020;19:102. doi: 10.1186/s12944-020-01282-y. PubMed DOI PMC

Warensjo E., Sundstrom J., Vessby B., Cederholm T., Riserus U. Markers of dietary fat quality and fatty acid desaturation as predictors of total and cardiovascular mortality: A population-based prospective study. Am. J. Clin. Nutr. 2008;88:203–209. doi: 10.1093/ajcn/88.1.203. PubMed DOI

Drzewoski J., Hanefeld M. The Current and Potential Therapeutic Use of Metformin-The Good Old Drug. Pharmaceuticals. 2021;14:122. doi: 10.3390/ph14020122. PubMed DOI PMC

Anabtawi A., Miles J.M. Metformin: Nonglycemic Effects and Potential Novel Indications. Endocr. Pract. 2016;22:999–1007. doi: 10.4158/EP151145.RA. PubMed DOI

Wilson R.R. In defense of the autopsy. JAMA. 1966;196:1011–1012. doi: 10.1001/jama.1966.03100240145036. PubMed DOI

Miyazaki M., Jacobson M.J., Man W.C., Cohen P., Asilmaz E., Friedman J.M., Ntambi J.M. Identification and characterization of murine SCD4, a novel heart-specific stearoyl-CoA desaturase isoform regulated by leptin and dietary factors. J. Biol. Chem. 2003;278:33904–33911. doi: 10.1074/jbc.M304724200. PubMed DOI

Dobrzyn P., Sampath H., Dobrzyn A., Miyazaki M., Ntambi J.M. Loss of stearoyl-CoA desaturase 1 inhibits fatty acid oxidation and increases glucose utilization in the heart. Am. J. Physiol. Endocrinol. Metab. 2008;294:E357–E364. doi: 10.1152/ajpendo.00471.2007. PubMed DOI

Pascual F., Coleman R.A. Fuel availability and fate in cardiac metabolism: A tale of two substrates. Biochim. Biophys. Acta. 2016;1861:1425–1433. doi: 10.1016/j.bbalip.2016.03.014. PubMed DOI PMC

Liu L., Shi X., Bharadwaj K.G., Ikeda S., Yamashita H., Yagyu H., Schaffer J.E., Yu Y.H., Goldberg I.J. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J. Biol. Chem. 2009;284:36312–36323. doi: 10.1074/jbc.M109.049817. PubMed DOI PMC

Barouch L.A., Gao D., Chen L., Miller K.L., Xu W., Phan A.C., Kittleson M.M., Minhas K.M., Berkowitz D.E., Wei C., et al. Cardiac myocyte apoptosis is associated with increased DNA damage and decreased survival in murine models of obesity. Circ. Res. 2006;98:119–124. doi: 10.1161/01.RES.0000199348.10580.1d. PubMed DOI

DaCosta R.M., Rodrigues D., Pereira C.A., Silva J.F., Alves J.V., Lobato N.S., Tostes R.C. Nrf2 as a potential mediator of cardiovascular risk in metabolic diseases. Front. Pharmacol. 2019;10:382. doi: 10.3389/fphar.2019.00382. PubMed DOI PMC

Vashi R., Patel B.M. NRF2 in Cardiovascular Diseases: A Ray of Hope! J. Cardiovasc. Transl. Res. 2020;14:573–586. doi: 10.1007/s12265-020-10083-8. PubMed DOI

Dobrzyn P., Pyrkowska A., Jazurek M., Dobrzyn A. Increased availability of endogenous and dietary oleic acid contributes to the upregulation of cardiac fatty acid oxidation. Mitochondrion. 2012;12:132–137. doi: 10.1016/j.mito.2011.05.007. PubMed DOI

Finck B.N., Han X., Courtois M., Aimond F., Nerbonne J.M., Kovacs A., Gross R.W., Kelly D.P. A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: Modulation by dietary fat content. Proc. Natl. Acad. Sci. USA. 2003;100:1226–1231. doi: 10.1073/pnas.0336724100. PubMed DOI PMC

Deng Y., Theken K.N., Lee C.R. Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. J. Mol. Cell. Cardiol. 2010;48:331–341. doi: 10.1016/j.yjmcc.2009.10.022. PubMed DOI PMC

Alsaad A.M., Zordoky B.N., Tse M.M., El-Kadi A.O. Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug. Metab. Rev. 2013;45:173–195. doi: 10.3109/03602532.2012.754460. PubMed DOI

Siriwardhana N., Kalupahana N.S., Moustaid-Moussa N. Health benefits of n-3 polyunsaturated fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Adv. Food. Nutr. Res. 2012;65:211–222. PubMed

Calder P.C. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 2006;83:1505S–1519S. doi: 10.1093/ajcn/83.6.1505S. PubMed DOI

Malinska H., Huttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI

Eder K. Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B Biomed. Appl. 1995;671:113–131. doi: 10.1016/0378-4347(95)00142-6. PubMed DOI

Pelikanova T., Kazdova L., Chvojkova S., Base J. Serum phospholipid fatty acid composition and insulin action in type 2 diabetic patients. Metabolism. 2001;50:1472–1478. PubMed

Kahleova H., Pelikanova T. Vegetarian Diets in the Prevention and Treatment of Type 2 Diabetes. J. Am. Coll. Nutr. 2015;34:448–458. doi: 10.1080/07315724.2014.976890. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...