Cardiovascular, Metabolic and Inflammatory Changes after Ovariectomy and Estradiol Substitution in Hereditary Hypertriglyceridemic Rats
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
grant No. NU20-01-00083 and IKEM, IN 00023001
Ministry of Health of the Czech Republic
PubMed
35269970
PubMed Central
PMC8910968
DOI
10.3390/ijms23052825
PII: ijms23052825
Knihovny.cz E-zdroje
- Klíčová slova
- cardiovascular changes, estradiol substitution, hereditary hypertriglyceridemic rat, insulin resistance, ovariectomy,
- MeSH
- estradiol * MeSH
- inzulinová rezistence * fyziologie MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- menopauza metabolismus MeSH
- ovarektomie škodlivé účinky MeSH
- srdce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- estradiol * MeSH
BACKGROUND: If menopause is really independent risk factor for cardiovascular disease is still under debate. We studied if ovariectomy in the model of insulin resistance causes cardiovascular changes, to what extent are these changes reversible by estradiol substitution and if they are accompanied by changes in other organs and tissues. METHODS: Hereditary hypertriglyceridemic female rats were divided into three groups: ovariectomized at 8th week (n = 6), ovariectomized with 17-β estradiol substitution (n = 6), and the sham group (n = 5). The strain of abdominal aorta measured by ultrasound, expression of vascular genes, weight and content of myocardium and also non-cardiac parameters were analyzed. RESULTS: After ovariectomy, the strain of abdominal aorta, expression of nitric oxide synthase in abdominal aorta, relative weight of myocardium and of the left ventricle and circulating interleukin-6 decreased; these changes were reversed by estradiol substitution. Interestingly, the content of triglycerides in myocardium did not change after ovariectomy, but significantly increased after estradiol substitution while adiposity index did not change after ovariectomy, but significantly decreased after estradiol substitution. CONCLUSION: Vascular and cardiac parameters under study differed in their response to ovariectomy and estradiol substitution. This indicates different effects of ovariectomy and estradiol on different cardiovascular but also extracardiac structures.
Department of Physiology Faculty of Science Charles University 128 44 Prague Czech Republic
Faculty Hospital Motol Prague 150 06 Prague Czech Republic
Internal Department 2nd Medical Faculty Charles University Prague 150 06 Prague Czech Republic
Zobrazit více v PubMed
Vogel B., Acevedo M., Appelman Y., Merz C.N.B., Chieffo A., Figtree G.A., Guerrero M., Kunadian V., Lam C.S.P., Maas A.H.E.M., et al. The Lancet women and cardiovascular disease Commission: Reducing the global burden by 2030. Lancet. 2021;397:2385–2438. doi: 10.1016/S0140-6736(21)00684-X. PubMed DOI
Woodward M. Cardiovascular Disease and the Female Disadvantage. Int. J. Environ. Res. Public Health. 2019;16:1165. doi: 10.3390/ijerph16071165. PubMed DOI PMC
Clarkson T.B. Estrogen effects on arteries vary with stage of reproductive life and extent of subclinical atherosclerosis progression. Menopause. 2018;25:1262–1274. doi: 10.1097/GME.0000000000001228. PubMed DOI
Hodis H.N., Mack W.J. The Timing Hypothesis and Hormone Replacement Therapy: A Paradigm Shift in the Primary Prevention of Coronary Heart Disease in Women. Part 1: Comparison of Therapeutic Efficacy. J. Am. Geriatr. Soc. 2013;61:1005–1010. doi: 10.1111/jgs.12140. PubMed DOI PMC
Hodis H.N., Mack W.J., Henderson V.W., Shoupe D., Budoff M.J., Hwang-Levine J., Li Y., Feng M., Dustin L., Kono N., et al. Vascular Effects of Early versus Late Postmenopausal Treatment with Estradiol. N. Engl. J. Med. 2016;374:1221–1231. doi: 10.1056/NEJMoa1505241. PubMed DOI PMC
Grady D., Herrington D., Bittner V., Blumenthal R., Davidson M., Hlatky M., Hsia J., Hulley S., Herd A., Khan S., et al. Cardiovascular Outcomes During 6.8 Years of Hormone Therapy: Heart and Estrogen/Progestin Replacement Study Follow-Up (HERS II) JAMA. 2002;57:678. doi: 10.1097/00006254-200210000-00020. PubMed DOI
Rossouw J.E., Anderson G.L., Prentice R.L., LaCroix A.Z., Kooperberg C., Stefanick M.L., Jackson R.D., Beresford S.A., Howard B.V., Johnson K.C., et al. Writing Group for the Women’s Health Initiative I: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–333. PubMed
Mack W.J., Hameed A.B., Xiang M., Roy S., Slater C.C., Stanczyk F.Z., Lobo R.A., Liu C.R., Liu C.H., Hodis H.N. Does elevated body mass modify the influence of postmenopausal estrogen replacement on atherosclerosis progression: Results from the estrogen in the prevention of atherosclerosis trial. Atherosclerosis. 2003;168:91–98. doi: 10.1016/S0021-9150(03)00052-2. PubMed DOI
Pitha J., Lesná K., Sekerkova A., Poledne R., Kovář J., Lejsková M., Dvořáková H., Adámková S., Lánská V., Bobak M. Menopausal transition enhances the atherogenic risk of smoking in middle aged women. Int. J. Cardiol. 2013;168:190–196. doi: 10.1016/j.ijcard.2012.09.095. PubMed DOI
Pitha J., Kovar J., Skodova Z., Cifkova R., Stavek P., Cervenka L., Sejda T., Lanska V., Poledne R. Association of in-tima-media thickness of carotid arteries with remnant lipoproteins in men and women. Physiol. Res. 2015;64:S377–S384. doi: 10.33549/physiolres.933195. PubMed DOI
Pitha J., Bobková D., Kovar J., Havlíčková J., Poledne R. Antiatherogenic effect of simvastatin is not due to decrease of ldl cholesterol in ovariectomized golden syrian hamster. Physiol. Res. 2010;59:401–406. doi: 10.33549/physiolres.931786. PubMed DOI
Lin J.B., Phillips E.H., Riggins T.E., Sangha G.S., Chakraborty S., Lee J.Y., Lycke R.J., Hernandez C.L., Soepriatna A.H., Thorne B.R., et al. Imaging of small animal peripheral artery disease models: Recent advancements and translational potential. Int. J. Mol. Sci. 2015;16:11131–11177. doi: 10.3390/ijms160511131. PubMed DOI PMC
Vrana A., Kazdova L. The hereditary hypertriglyceridemic nonobese rat: An experimental model of human hypertriglyceridemia. Transpl. Proc. 1990;22:2579. PubMed
Zhang L., Li C., Yang L., Adzika G.K., Machuki J.O., Shi M., Sun Q., Sun H. Estrogen Protects Vasomotor Functions in Rats During Catecholamine Stress. Front. Cardiovasc. Med. 2021;8:679240. doi: 10.3389/fcvm.2021.679240. PubMed DOI PMC
Bourassa P.A., Milos P.M., Gaynor B.J., Breslow J.L., Aiello R.J. Estrogen reduces atherosclerotic lesion development in apolipoprotein E-deficient mice. Proc. Natl. Acad. Sci. USA. 1996;93:10022–10027. doi: 10.1073/pnas.93.19.10022. PubMed DOI PMC
Bendale D.S., Karpe P.A., Chhabra R., Shete S.P., Shah H., Tikoo K. 17-beta Oestradiol prevents cardiovascular dys-function in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br. J. Pharmacol. 2013;170:779–795. doi: 10.1111/bph.12290. PubMed DOI PMC
Ceylan-Isik A.F., Erdogan-Tulmac O.B., Ari N., Ozansoy G., Ren J. Effect of 17beta-oestradiol replacement on vascular responsiveness in ovariectomized diabetic rats. Clin. Exp. Pharmacol. Physiol. 2009;36:e65–e71. doi: 10.1111/j.1440-1681.2009.05255.x. PubMed DOI
Reed K.E., Westphale E.M., Larson D.M., Wang H.Z., Veenstra R.D., Beyer E.C. Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein. J. Clin. Investig. 1993;91:997–1004. doi: 10.1172/JCI116321. PubMed DOI PMC
Wu Z., Lou Y., Jin W., Liu Y., Lu L., Chen Q., Zhang R. The Connexin37 gene C1019T polymorphism and risk of coronary artery disease: A meta-analysis. Arch. Med. Res. 2014;45:21–30. doi: 10.1016/j.arcmed.2013.12.001. PubMed DOI
Guo S., Yang Y., Yang Z., You H., Shi Y., Hu Z., Meng Z., Xiao J. Improving myocardial fractional flow reserve in coronary atherosclerosis via CX37 gene silence: A preclinical validation study in pigs. Interact. Cardiovasc. Thorac. Surg. 2017;26:139–145. doi: 10.1093/icvts/ivx218. PubMed DOI
Derouette J.-P., Wong C., Burnier L., Morel S., Sutter E., Galan K., Brisset A.C., Roth I., Chadjichristos C.E., Kwak B.R. Molecular role of Cx37 in advanced atherosclerosis: A micro-array study. Atherosclerosis. 2009;206:69–76. doi: 10.1016/j.atherosclerosis.2009.02.020. PubMed DOI
Pitha J., Kralova Lesna I., Hubacek J.A., Sekerkova A., Lanska V., Adamkova V., Dorobantu M., Nicolescu R., Steiner R., Ivic V., et al. Smoking impairs and circulating stem cells favour the protective effect of the T allele of the con-nexin37 gene in ischemic heart disease—A multinational study. Atherosclerosis. 2016;244:73–78. doi: 10.1016/j.atherosclerosis.2015.11.007. PubMed DOI
Pitha J., Hubácek J.A., Cífková R., Skodová Z., Stávek P., Lánská V., Kovar J., Poledne R. The association between subclinical atherosclerosis in carotid arteries and Connexin 37 gene polymorphism (1019C>T.; Pro319Ser) in women. Int. Angiol. 2011;30:221–226. PubMed
Hubacek J.A., Staněk V., Gebauerová M., Pilipčincová A., Poledne R., Aschermann M., Skalická H., Matoušková J., Kruger A., Pěnička M., et al. Lack of an association between connexin-37, stromelysin-1, plasminogen activator-inhibitor type 1 and lymphotoxin-alpha genes and acute coronary syndrome in Czech Caucasians. Exp. Clin. Cardiol. 2010;15:e52. PubMed PMC
Looft-Wilson R.C., Billig J.E., Sessa W.C. Shear Stress Attenuates Inward Remodeling in Cultured Mouse Thoracodorsal Arteries in an eNOS-Dependent, but Not Hemodynamic Manner, and Increases Cx37 Expression. J. Vasc. Res. 2019;56:284–295. doi: 10.1159/000502690. PubMed DOI PMC
Pfenniger A., Meens M.J., Pedrigi R.M., Foglia B., Sutter E., Pelli G., Rochemont V., Petrova T.V., Krams R., Kwak B.R. Shear stress-induced atherosclerotic plaque composition in ApoE(-/-) mice is modulated by connexin37. Atherosclerosis. 2015;243:1–10. doi: 10.1016/j.atherosclerosis.2015.08.029. PubMed DOI
Bozdogan O., Bozcaarmutlu A., Kaya S.T., Sapmaz C., Ozarslan T.O., Eksioglu D., Yasar S. Decreasing myocardial estrogen receptors and antioxidant activity may be responsible for increasing ischemia- and reperfusion-induced ventricular arrhythmia in older female rats. Life Sci. 2021;271:119190. doi: 10.1016/j.lfs.2021.119190. PubMed DOI
Aryan L., Younessi D., Zargari M., Banerjee S., Agopian J., Rahman S., Borna R., Ruffenach G., Umar S., Eghbali M. The Role of Estrogen Receptors in Cardiovascular Disease. Int. J. Mol. Sci. 2020;21:4314. doi: 10.3390/ijms21124314. PubMed DOI PMC
Murphy E. Estrogen Signaling and Cardiovascular Disease. Circ. Res. 2011;109:687–696. doi: 10.1161/CIRCRESAHA.110.236687. PubMed DOI PMC
Matarrese P., Maccari S., Vona R., Gambardella L., Stati T., Marano G. Role of β-Adrenergic Receptors and Estrogen in Cardiac Repair after Myocardial Infarction: An Overview. Int. J. Mol. Sci. 2021;22:8957. doi: 10.3390/ijms22168957. PubMed DOI PMC
Squiers G.T., McLellan M.A., Ilinykh A., Branca J., Rosenthal N., Pinto A.R. Cardiac cellularity is dependent upon biological sex and is regulated by gonadal hormones. Cardiovasc. Res. 2020;117:2252–2262. doi: 10.1093/cvr/cvaa265. PubMed DOI PMC
Yang X., Chen G.-J., Papp R., DeFranco D.B., Zeng F., Salama G. Oestrogen upregulates L-type Ca2+ channels via oestrogenreceptor-α by a regional genomic mechanism in female rabbit hearts. J. Physiol. 2012;590:493–508. doi: 10.1113/jphysiol.2011.219501. PubMed DOI PMC
Wei J., Nelson M.D., Szczepaniak E.W., Smith L., Mehta P.K., Thomson L.E., Berman D.S., Li D., Bairey Merz C.N., Szczepaniak L.S. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women. Am. J. Physiol. Heart Circ. Physiol. 2016;310:H14–H19. doi: 10.1152/ajpheart.00612.2015. PubMed DOI PMC
Zhou Y.-T., Grayburn P., Karim A., Shimabukuro M., Higa M., Baetens D., Orci L., Unger R.H. Lipotoxic heart disease in obese rats: Implications for human obesity. Proc. Natl. Acad. Sci. USA. 2000;97:1784–1789. doi: 10.1073/pnas.97.4.1784. PubMed DOI PMC
Varela R., Rauschert I., Romanelli G., Alberro A., Benech J.C. Hyperglycemia and hyperlipidemia can induce mor-phophysiological changes in rat cardiac cell line. Biochem. Biophys. Rep. 2021;26:100983. PubMed PMC
Wang S., Wong L.-Y., Neumann D., Liu Y., Sun A., Antoons G., Strzelecka A., Glatz J.F., Nabben M., Luiken J.J. Augmenting Vacuolar H+-ATPase Function Prevents Cardiomyocytes from Lipid-Overload Induced Dysfunction. Int. J. Mol. Sci. 2020;21:1520. doi: 10.3390/ijms21041520. PubMed DOI PMC
Miklankova D., Markova I., Hüttl M., Zapletalova I., Poruba M., Malinska H. Metformin Affects Cardiac Arachidonic Acid Metabolism and Cardiac Lipid Metabolite Storage in a Prediabetic Rat Model. Int. J. Mol. Sci. 2021;22:7680. doi: 10.3390/ijms22147680. PubMed DOI PMC
Malinská H., Hüttl M., Miklánková D., Trnovská J., Zapletalová I., Poruba M., Marková I. Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia. Int. J. Mol. Sci. 2021;22:4527. doi: 10.3390/ijms22094527. PubMed DOI PMC
Huang J., Wang D., Huang L.H., Huang H. Roles of Reconstituted High-Density Lipoprotein Nanoparticles in Cardi-ovascular Disease: A New Paradigm for Drug Discovery. Int. J. Mol. Sci. 2020;21:739. doi: 10.3390/ijms21030739. PubMed DOI PMC
Oschry Y., Eisenberg S. Rat plasma lipoproteins: Re-evaluation of a lipoprotein system in an animal devoid of cholesteryl ester transfer activity. J. Lipid Res. 1982;23:1099–1106. doi: 10.1016/S0022-2275(20)38046-9. PubMed DOI
Kjeldsen E., Nordestgaard L., Frikke-Schmidt R. HDL Cholesterol and Non-Cardiovascular Disease: A Narrative Review. Int. J. Mol. Sci. 2021;22:4547. doi: 10.3390/ijms22094547. PubMed DOI PMC
Agacayak E., Basaranoglu S., Tunc S., Kaplan I., Evliyaoglu O., Gul T., Icen M.S., Findik F.M. Oxidant/antioxidant status, paraoxonase activity, and lipid profile in plasma of ovariectomized rats under the influence of estrogen, estrogen combined with progesterone, and genistein. Drug Des. Dev. Ther. 2015;9:2975–2982. doi: 10.2147/DDDT.S82263. PubMed DOI PMC
Reiss A.B., Siegart N.M., De Leon J. Interleukin-6 in atherosclerosis: Atherogenic or atheroprotective? Clin. Lipidol. 2017;12:14–23.
Rachon D., Mysliwska J., Suchecka-Rachon K., Wieckiewicz J., Mysliwski A. Effects of oestrogen deprivation on in-terleukin-6 production by peripheral blood mononuclear cells of postmenopausal women. J. Endocrinol. 2002;172:387–395. doi: 10.1677/joe.0.1720387. PubMed DOI
Kim O.Y., Chae J.S., Paik J.K., Seo H.S., Jang Y., Cavaillon J.-M., Lee J.H. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. AGE. 2011;34:415–425. doi: 10.1007/s11357-011-9244-2. PubMed DOI PMC
Khoa N.D., Montesinos M.C., Reiss A.B., Delano D.L., Awadallah N.W., Cronstein B. Inflammatory Cytokines Regulate Function and Expression of Adenosine A2A Receptors in Human Monocytic THP-1 Cells. J. Immunol. 2001;167:4026–4032. doi: 10.4049/jimmunol.167.7.4026. PubMed DOI
Palomer X., Salvado L., Barroso E., Vazquez-Carrera M. An overview of the crosstalk between inflammatory process-es and metabolic dysregulation during diabetic cardiomyopathy. Int. J. Cardiol. 2013;168:3160–3172. doi: 10.1016/j.ijcard.2013.07.150. PubMed DOI
Knipp B.S., Ailawadi G., Sullivan V.V., Roelofs K.J., Henke P.K., Stanley J.C., Upchurch G.R., Jr. Ultrasound meas-urement of aortic diameters in rodent models of aneurysm disease. J. Surg. Res. 2003;112:97–101. doi: 10.1016/S0022-4804(03)00114-8. PubMed DOI
Long T., Yao J.K., Li J., Kirshner Z.Z., Nelson D., Dougherty G.G., Gibbs R.B. Estradiol and selective estrogen receptor agonists differentially affect brain monoamines and amino acids levels in transitional and surgical menopausal rat models. Mol. Cell Endocrinol. 2019;496:110533. doi: 10.1016/j.mce.2019.110533. PubMed DOI PMC
Polito F., Marini H., Bitto A., Irrera N., Vaccaro M., Adamo E.B., Micali A., Squadrito F., Minutoli L., Altavilla D. Genistein aglycone, a soy-derived isoflavone, improves skin changes induced by ovariectomy in rats. Br. J. Pharmacol. 2011;165:994–1005. doi: 10.1111/j.1476-5381.2011.01619.x. PubMed DOI PMC
Buleon M., Cuny M., Grellier J., Charles P.Y., Belliere J., Casemayou A., Arnal J.F., Schanstra J.P., Tack I. A single dose of estrogen during hemorrhagic shock protects against Kidney Injury whereas estrogen restoration in ovariectomized mice is ineffective. Sci. Rep. 2020;10:17240. doi: 10.1038/s41598-020-73974-5. PubMed DOI PMC
Strom J.O., Theodorsson E., Holm L., Theodorsson A. Different methods for administering 17beta-estradiol to ovari-ectomized rats result in opposite effects on ischemic brain damage. BMC Neurosci. 2010;11:39. doi: 10.1186/1471-2202-11-39. PubMed DOI PMC
Medina-Contreras J., Villalobos-Molina R., Zarain-Herzberg A., Balderas-Villalobos J. Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol. Cell. Biochem. 2020;475:261–276. doi: 10.1007/s11010-020-03879-4. PubMed DOI
Rosenberg A.J., Lane-Cordova A.D., Wee S.O., White D.W., Hilgenkamp T.I.M., Fernhall B., Baynard T. Healthy aging and carotid performance: Strain measures and β-stiffness index. Hypertens. Res. 2018;41:748–755. doi: 10.1038/s41440-018-0065-x. PubMed DOI
Iino H., Okano T., Daimon M., Sasaki K., Chigira M., Nakao T., Mizuno Y., Yamazaki T., Kurano M., Yatomi Y., et al. Usefulness of Carotid Arterial Strain Values for Evaluating the Arteriosclerosis. J. Atheroscler. Thromb. 2019;26:476–487. doi: 10.5551/jat.45591. PubMed DOI PMC
Saito M., Okayama H., Inoue K., Yoshii T., Hiasa G., Sumimoto T., Nishimura K., Ogimoto A., Higaki J. Carotid arterial circumferential strain by two-dimensional speckle tracking: A novel parameter of arterial elasticity. Hypertens. Res. 2012;35:897–902. doi: 10.1038/hr.2012.39. PubMed DOI
Li H., Matheny M., Nicolson M., Tumer N., Scarpace P.J. Leptin gene expression increases with age independent of increasing adiposity in rats. Diabetes. 1997;46:2035–2039. doi: 10.2337/diab.46.12.2035. PubMed DOI
Hypertension after the Menopause: What Can We Learn from Experimental Studies?