Cardiovascular, Metabolic and Inflammatory Changes after Ovariectomy and Estradiol Substitution in Hereditary Hypertriglyceridemic Rats

. 2022 Mar 04 ; 23 (5) : . [epub] 20220304

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35269970

Grantová podpora
grant No. NU20-01-00083 and IKEM, IN 00023001 Ministry of Health of the Czech Republic

BACKGROUND: If menopause is really independent risk factor for cardiovascular disease is still under debate. We studied if ovariectomy in the model of insulin resistance causes cardiovascular changes, to what extent are these changes reversible by estradiol substitution and if they are accompanied by changes in other organs and tissues. METHODS: Hereditary hypertriglyceridemic female rats were divided into three groups: ovariectomized at 8th week (n = 6), ovariectomized with 17-β estradiol substitution (n = 6), and the sham group (n = 5). The strain of abdominal aorta measured by ultrasound, expression of vascular genes, weight and content of myocardium and also non-cardiac parameters were analyzed. RESULTS: After ovariectomy, the strain of abdominal aorta, expression of nitric oxide synthase in abdominal aorta, relative weight of myocardium and of the left ventricle and circulating interleukin-6 decreased; these changes were reversed by estradiol substitution. Interestingly, the content of triglycerides in myocardium did not change after ovariectomy, but significantly increased after estradiol substitution while adiposity index did not change after ovariectomy, but significantly decreased after estradiol substitution. CONCLUSION: Vascular and cardiac parameters under study differed in their response to ovariectomy and estradiol substitution. This indicates different effects of ovariectomy and estradiol on different cardiovascular but also extracardiac structures.

Zobrazit více v PubMed

Vogel B., Acevedo M., Appelman Y., Merz C.N.B., Chieffo A., Figtree G.A., Guerrero M., Kunadian V., Lam C.S.P., Maas A.H.E.M., et al. The Lancet women and cardiovascular disease Commission: Reducing the global burden by 2030. Lancet. 2021;397:2385–2438. doi: 10.1016/S0140-6736(21)00684-X. PubMed DOI

Woodward M. Cardiovascular Disease and the Female Disadvantage. Int. J. Environ. Res. Public Health. 2019;16:1165. doi: 10.3390/ijerph16071165. PubMed DOI PMC

Clarkson T.B. Estrogen effects on arteries vary with stage of reproductive life and extent of subclinical atherosclerosis progression. Menopause. 2018;25:1262–1274. doi: 10.1097/GME.0000000000001228. PubMed DOI

Hodis H.N., Mack W.J. The Timing Hypothesis and Hormone Replacement Therapy: A Paradigm Shift in the Primary Prevention of Coronary Heart Disease in Women. Part 1: Comparison of Therapeutic Efficacy. J. Am. Geriatr. Soc. 2013;61:1005–1010. doi: 10.1111/jgs.12140. PubMed DOI PMC

Hodis H.N., Mack W.J., Henderson V.W., Shoupe D., Budoff M.J., Hwang-Levine J., Li Y., Feng M., Dustin L., Kono N., et al. Vascular Effects of Early versus Late Postmenopausal Treatment with Estradiol. N. Engl. J. Med. 2016;374:1221–1231. doi: 10.1056/NEJMoa1505241. PubMed DOI PMC

Grady D., Herrington D., Bittner V., Blumenthal R., Davidson M., Hlatky M., Hsia J., Hulley S., Herd A., Khan S., et al. Cardiovascular Outcomes During 6.8 Years of Hormone Therapy: Heart and Estrogen/Progestin Replacement Study Follow-Up (HERS II) JAMA. 2002;57:678. doi: 10.1097/00006254-200210000-00020. PubMed DOI

Rossouw J.E., Anderson G.L., Prentice R.L., LaCroix A.Z., Kooperberg C., Stefanick M.L., Jackson R.D., Beresford S.A., Howard B.V., Johnson K.C., et al. Writing Group for the Women’s Health Initiative I: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: Principal results From the Women’s Health Initiative randomized controlled trial. JAMA. 2002;288:321–333. PubMed

Mack W.J., Hameed A.B., Xiang M., Roy S., Slater C.C., Stanczyk F.Z., Lobo R.A., Liu C.R., Liu C.H., Hodis H.N. Does elevated body mass modify the influence of postmenopausal estrogen replacement on atherosclerosis progression: Results from the estrogen in the prevention of atherosclerosis trial. Atherosclerosis. 2003;168:91–98. doi: 10.1016/S0021-9150(03)00052-2. PubMed DOI

Pitha J., Lesná K., Sekerkova A., Poledne R., Kovář J., Lejsková M., Dvořáková H., Adámková S., Lánská V., Bobak M. Menopausal transition enhances the atherogenic risk of smoking in middle aged women. Int. J. Cardiol. 2013;168:190–196. doi: 10.1016/j.ijcard.2012.09.095. PubMed DOI

Pitha J., Kovar J., Skodova Z., Cifkova R., Stavek P., Cervenka L., Sejda T., Lanska V., Poledne R. Association of in-tima-media thickness of carotid arteries with remnant lipoproteins in men and women. Physiol. Res. 2015;64:S377–S384. doi: 10.33549/physiolres.933195. PubMed DOI

Pitha J., Bobková D., Kovar J., Havlíčková J., Poledne R. Antiatherogenic effect of simvastatin is not due to decrease of ldl cholesterol in ovariectomized golden syrian hamster. Physiol. Res. 2010;59:401–406. doi: 10.33549/physiolres.931786. PubMed DOI

Lin J.B., Phillips E.H., Riggins T.E., Sangha G.S., Chakraborty S., Lee J.Y., Lycke R.J., Hernandez C.L., Soepriatna A.H., Thorne B.R., et al. Imaging of small animal peripheral artery disease models: Recent advancements and translational potential. Int. J. Mol. Sci. 2015;16:11131–11177. doi: 10.3390/ijms160511131. PubMed DOI PMC

Vrana A., Kazdova L. The hereditary hypertriglyceridemic nonobese rat: An experimental model of human hypertriglyceridemia. Transpl. Proc. 1990;22:2579. PubMed

Zhang L., Li C., Yang L., Adzika G.K., Machuki J.O., Shi M., Sun Q., Sun H. Estrogen Protects Vasomotor Functions in Rats During Catecholamine Stress. Front. Cardiovasc. Med. 2021;8:679240. doi: 10.3389/fcvm.2021.679240. PubMed DOI PMC

Bourassa P.A., Milos P.M., Gaynor B.J., Breslow J.L., Aiello R.J. Estrogen reduces atherosclerotic lesion development in apolipoprotein E-deficient mice. Proc. Natl. Acad. Sci. USA. 1996;93:10022–10027. doi: 10.1073/pnas.93.19.10022. PubMed DOI PMC

Bendale D.S., Karpe P.A., Chhabra R., Shete S.P., Shah H., Tikoo K. 17-beta Oestradiol prevents cardiovascular dys-function in post-menopausal metabolic syndrome by affecting SIRT1/AMPK/H3 acetylation. Br. J. Pharmacol. 2013;170:779–795. doi: 10.1111/bph.12290. PubMed DOI PMC

Ceylan-Isik A.F., Erdogan-Tulmac O.B., Ari N., Ozansoy G., Ren J. Effect of 17beta-oestradiol replacement on vascular responsiveness in ovariectomized diabetic rats. Clin. Exp. Pharmacol. Physiol. 2009;36:e65–e71. doi: 10.1111/j.1440-1681.2009.05255.x. PubMed DOI

Reed K.E., Westphale E.M., Larson D.M., Wang H.Z., Veenstra R.D., Beyer E.C. Molecular cloning and functional expression of human connexin37, an endothelial cell gap junction protein. J. Clin. Investig. 1993;91:997–1004. doi: 10.1172/JCI116321. PubMed DOI PMC

Wu Z., Lou Y., Jin W., Liu Y., Lu L., Chen Q., Zhang R. The Connexin37 gene C1019T polymorphism and risk of coronary artery disease: A meta-analysis. Arch. Med. Res. 2014;45:21–30. doi: 10.1016/j.arcmed.2013.12.001. PubMed DOI

Guo S., Yang Y., Yang Z., You H., Shi Y., Hu Z., Meng Z., Xiao J. Improving myocardial fractional flow reserve in coronary atherosclerosis via CX37 gene silence: A preclinical validation study in pigs. Interact. Cardiovasc. Thorac. Surg. 2017;26:139–145. doi: 10.1093/icvts/ivx218. PubMed DOI

Derouette J.-P., Wong C., Burnier L., Morel S., Sutter E., Galan K., Brisset A.C., Roth I., Chadjichristos C.E., Kwak B.R. Molecular role of Cx37 in advanced atherosclerosis: A micro-array study. Atherosclerosis. 2009;206:69–76. doi: 10.1016/j.atherosclerosis.2009.02.020. PubMed DOI

Pitha J., Kralova Lesna I., Hubacek J.A., Sekerkova A., Lanska V., Adamkova V., Dorobantu M., Nicolescu R., Steiner R., Ivic V., et al. Smoking impairs and circulating stem cells favour the protective effect of the T allele of the con-nexin37 gene in ischemic heart disease—A multinational study. Atherosclerosis. 2016;244:73–78. doi: 10.1016/j.atherosclerosis.2015.11.007. PubMed DOI

Pitha J., Hubácek J.A., Cífková R., Skodová Z., Stávek P., Lánská V., Kovar J., Poledne R. The association between subclinical atherosclerosis in carotid arteries and Connexin 37 gene polymorphism (1019C>T.; Pro319Ser) in women. Int. Angiol. 2011;30:221–226. PubMed

Hubacek J.A., Staněk V., Gebauerová M., Pilipčincová A., Poledne R., Aschermann M., Skalická H., Matoušková J., Kruger A., Pěnička M., et al. Lack of an association between connexin-37, stromelysin-1, plasminogen activator-inhibitor type 1 and lymphotoxin-alpha genes and acute coronary syndrome in Czech Caucasians. Exp. Clin. Cardiol. 2010;15:e52. PubMed PMC

Looft-Wilson R.C., Billig J.E., Sessa W.C. Shear Stress Attenuates Inward Remodeling in Cultured Mouse Thoracodorsal Arteries in an eNOS-Dependent, but Not Hemodynamic Manner, and Increases Cx37 Expression. J. Vasc. Res. 2019;56:284–295. doi: 10.1159/000502690. PubMed DOI PMC

Pfenniger A., Meens M.J., Pedrigi R.M., Foglia B., Sutter E., Pelli G., Rochemont V., Petrova T.V., Krams R., Kwak B.R. Shear stress-induced atherosclerotic plaque composition in ApoE(-/-) mice is modulated by connexin37. Atherosclerosis. 2015;243:1–10. doi: 10.1016/j.atherosclerosis.2015.08.029. PubMed DOI

Bozdogan O., Bozcaarmutlu A., Kaya S.T., Sapmaz C., Ozarslan T.O., Eksioglu D., Yasar S. Decreasing myocardial estrogen receptors and antioxidant activity may be responsible for increasing ischemia- and reperfusion-induced ventricular arrhythmia in older female rats. Life Sci. 2021;271:119190. doi: 10.1016/j.lfs.2021.119190. PubMed DOI

Aryan L., Younessi D., Zargari M., Banerjee S., Agopian J., Rahman S., Borna R., Ruffenach G., Umar S., Eghbali M. The Role of Estrogen Receptors in Cardiovascular Disease. Int. J. Mol. Sci. 2020;21:4314. doi: 10.3390/ijms21124314. PubMed DOI PMC

Murphy E. Estrogen Signaling and Cardiovascular Disease. Circ. Res. 2011;109:687–696. doi: 10.1161/CIRCRESAHA.110.236687. PubMed DOI PMC

Matarrese P., Maccari S., Vona R., Gambardella L., Stati T., Marano G. Role of β-Adrenergic Receptors and Estrogen in Cardiac Repair after Myocardial Infarction: An Overview. Int. J. Mol. Sci. 2021;22:8957. doi: 10.3390/ijms22168957. PubMed DOI PMC

Squiers G.T., McLellan M.A., Ilinykh A., Branca J., Rosenthal N., Pinto A.R. Cardiac cellularity is dependent upon biological sex and is regulated by gonadal hormones. Cardiovasc. Res. 2020;117:2252–2262. doi: 10.1093/cvr/cvaa265. PubMed DOI PMC

Yang X., Chen G.-J., Papp R., DeFranco D.B., Zeng F., Salama G. Oestrogen upregulates L-type Ca2+ channels via oestrogenreceptor-α by a regional genomic mechanism in female rabbit hearts. J. Physiol. 2012;590:493–508. doi: 10.1113/jphysiol.2011.219501. PubMed DOI PMC

Wei J., Nelson M.D., Szczepaniak E.W., Smith L., Mehta P.K., Thomson L.E., Berman D.S., Li D., Bairey Merz C.N., Szczepaniak L.S. Myocardial steatosis as a possible mechanistic link between diastolic dysfunction and coronary microvascular dysfunction in women. Am. J. Physiol. Heart Circ. Physiol. 2016;310:H14–H19. doi: 10.1152/ajpheart.00612.2015. PubMed DOI PMC

Zhou Y.-T., Grayburn P., Karim A., Shimabukuro M., Higa M., Baetens D., Orci L., Unger R.H. Lipotoxic heart disease in obese rats: Implications for human obesity. Proc. Natl. Acad. Sci. USA. 2000;97:1784–1789. doi: 10.1073/pnas.97.4.1784. PubMed DOI PMC

Varela R., Rauschert I., Romanelli G., Alberro A., Benech J.C. Hyperglycemia and hyperlipidemia can induce mor-phophysiological changes in rat cardiac cell line. Biochem. Biophys. Rep. 2021;26:100983. PubMed PMC

Wang S., Wong L.-Y., Neumann D., Liu Y., Sun A., Antoons G., Strzelecka A., Glatz J.F., Nabben M., Luiken J.J. Augmenting Vacuolar H+-ATPase Function Prevents Cardiomyocytes from Lipid-Overload Induced Dysfunction. Int. J. Mol. Sci. 2020;21:1520. doi: 10.3390/ijms21041520. PubMed DOI PMC

Miklankova D., Markova I., Hüttl M., Zapletalova I., Poruba M., Malinska H. Metformin Affects Cardiac Arachidonic Acid Metabolism and Cardiac Lipid Metabolite Storage in a Prediabetic Rat Model. Int. J. Mol. Sci. 2021;22:7680. doi: 10.3390/ijms22147680. PubMed DOI PMC

Malinská H., Hüttl M., Miklánková D., Trnovská J., Zapletalová I., Poruba M., Marková I. Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia. Int. J. Mol. Sci. 2021;22:4527. doi: 10.3390/ijms22094527. PubMed DOI PMC

Huang J., Wang D., Huang L.H., Huang H. Roles of Reconstituted High-Density Lipoprotein Nanoparticles in Cardi-ovascular Disease: A New Paradigm for Drug Discovery. Int. J. Mol. Sci. 2020;21:739. doi: 10.3390/ijms21030739. PubMed DOI PMC

Oschry Y., Eisenberg S. Rat plasma lipoproteins: Re-evaluation of a lipoprotein system in an animal devoid of cholesteryl ester transfer activity. J. Lipid Res. 1982;23:1099–1106. doi: 10.1016/S0022-2275(20)38046-9. PubMed DOI

Kjeldsen E., Nordestgaard L., Frikke-Schmidt R. HDL Cholesterol and Non-Cardiovascular Disease: A Narrative Review. Int. J. Mol. Sci. 2021;22:4547. doi: 10.3390/ijms22094547. PubMed DOI PMC

Agacayak E., Basaranoglu S., Tunc S., Kaplan I., Evliyaoglu O., Gul T., Icen M.S., Findik F.M. Oxidant/antioxidant status, paraoxonase activity, and lipid profile in plasma of ovariectomized rats under the influence of estrogen, estrogen combined with progesterone, and genistein. Drug Des. Dev. Ther. 2015;9:2975–2982. doi: 10.2147/DDDT.S82263. PubMed DOI PMC

Reiss A.B., Siegart N.M., De Leon J. Interleukin-6 in atherosclerosis: Atherogenic or atheroprotective? Clin. Lipidol. 2017;12:14–23.

Rachon D., Mysliwska J., Suchecka-Rachon K., Wieckiewicz J., Mysliwski A. Effects of oestrogen deprivation on in-terleukin-6 production by peripheral blood mononuclear cells of postmenopausal women. J. Endocrinol. 2002;172:387–395. doi: 10.1677/joe.0.1720387. PubMed DOI

Kim O.Y., Chae J.S., Paik J.K., Seo H.S., Jang Y., Cavaillon J.-M., Lee J.H. Effects of aging and menopause on serum interleukin-6 levels and peripheral blood mononuclear cell cytokine production in healthy nonobese women. AGE. 2011;34:415–425. doi: 10.1007/s11357-011-9244-2. PubMed DOI PMC

Khoa N.D., Montesinos M.C., Reiss A.B., Delano D.L., Awadallah N.W., Cronstein B. Inflammatory Cytokines Regulate Function and Expression of Adenosine A2A Receptors in Human Monocytic THP-1 Cells. J. Immunol. 2001;167:4026–4032. doi: 10.4049/jimmunol.167.7.4026. PubMed DOI

Palomer X., Salvado L., Barroso E., Vazquez-Carrera M. An overview of the crosstalk between inflammatory process-es and metabolic dysregulation during diabetic cardiomyopathy. Int. J. Cardiol. 2013;168:3160–3172. doi: 10.1016/j.ijcard.2013.07.150. PubMed DOI

Knipp B.S., Ailawadi G., Sullivan V.V., Roelofs K.J., Henke P.K., Stanley J.C., Upchurch G.R., Jr. Ultrasound meas-urement of aortic diameters in rodent models of aneurysm disease. J. Surg. Res. 2003;112:97–101. doi: 10.1016/S0022-4804(03)00114-8. PubMed DOI

Long T., Yao J.K., Li J., Kirshner Z.Z., Nelson D., Dougherty G.G., Gibbs R.B. Estradiol and selective estrogen receptor agonists differentially affect brain monoamines and amino acids levels in transitional and surgical menopausal rat models. Mol. Cell Endocrinol. 2019;496:110533. doi: 10.1016/j.mce.2019.110533. PubMed DOI PMC

Polito F., Marini H., Bitto A., Irrera N., Vaccaro M., Adamo E.B., Micali A., Squadrito F., Minutoli L., Altavilla D. Genistein aglycone, a soy-derived isoflavone, improves skin changes induced by ovariectomy in rats. Br. J. Pharmacol. 2011;165:994–1005. doi: 10.1111/j.1476-5381.2011.01619.x. PubMed DOI PMC

Buleon M., Cuny M., Grellier J., Charles P.Y., Belliere J., Casemayou A., Arnal J.F., Schanstra J.P., Tack I. A single dose of estrogen during hemorrhagic shock protects against Kidney Injury whereas estrogen restoration in ovariectomized mice is ineffective. Sci. Rep. 2020;10:17240. doi: 10.1038/s41598-020-73974-5. PubMed DOI PMC

Strom J.O., Theodorsson E., Holm L., Theodorsson A. Different methods for administering 17beta-estradiol to ovari-ectomized rats result in opposite effects on ischemic brain damage. BMC Neurosci. 2010;11:39. doi: 10.1186/1471-2202-11-39. PubMed DOI PMC

Medina-Contreras J., Villalobos-Molina R., Zarain-Herzberg A., Balderas-Villalobos J. Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol. Cell. Biochem. 2020;475:261–276. doi: 10.1007/s11010-020-03879-4. PubMed DOI

Rosenberg A.J., Lane-Cordova A.D., Wee S.O., White D.W., Hilgenkamp T.I.M., Fernhall B., Baynard T. Healthy aging and carotid performance: Strain measures and β-stiffness index. Hypertens. Res. 2018;41:748–755. doi: 10.1038/s41440-018-0065-x. PubMed DOI

Iino H., Okano T., Daimon M., Sasaki K., Chigira M., Nakao T., Mizuno Y., Yamazaki T., Kurano M., Yatomi Y., et al. Usefulness of Carotid Arterial Strain Values for Evaluating the Arteriosclerosis. J. Atheroscler. Thromb. 2019;26:476–487. doi: 10.5551/jat.45591. PubMed DOI PMC

Saito M., Okayama H., Inoue K., Yoshii T., Hiasa G., Sumimoto T., Nishimura K., Ogimoto A., Higaki J. Carotid arterial circumferential strain by two-dimensional speckle tracking: A novel parameter of arterial elasticity. Hypertens. Res. 2012;35:897–902. doi: 10.1038/hr.2012.39. PubMed DOI

Li H., Matheny M., Nicolson M., Tumer N., Scarpace P.J. Leptin gene expression increases with age independent of increasing adiposity in rats. Diabetes. 1997;46:2035–2039. doi: 10.2337/diab.46.12.2035. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...