Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IKEM, IN 00023001
Ministry of Health of the Czech Republic under its conceptual development of research organisations programme
NU20-01-00083
Ministry of Health of the Czech Republic
IGA_LF_2021_013.
Ministry of Health of the Czech Republic
PubMed
33926097
PubMed Central
PMC8123580
DOI
10.3390/ijms22094527
PII: ijms22094527
Knihovny.cz E-zdroje
- Klíčová slova
- brown adipose tissue, hepatic steatosis, insulin resistance, metabolic syndrome, methylglyoxal, obesity, ovariectomy,
- MeSH
- bílá tuková tkáň metabolismus MeSH
- dieta s vysokým obsahem tuků MeSH
- dyslipidemie metabolismus MeSH
- glukosa metabolismus MeSH
- hmotnostní přírůstek MeSH
- hnědá tuková tkáň metabolismus MeSH
- inzulin metabolismus MeSH
- inzulinová rezistence MeSH
- játra metabolismus MeSH
- krysa rodu Rattus MeSH
- lipidy krev MeSH
- lipogeneze účinky léků MeSH
- lipolýza MeSH
- menopauza metabolismus fyziologie MeSH
- metabolismus lipidů účinky léků fyziologie MeSH
- nitrobřišní tuk metabolismus MeSH
- obezita metabolismus MeSH
- ovarektomie škodlivé účinky MeSH
- poruchy metabolismu lipidů etiologie patofyziologie MeSH
- postmenopauza metabolismus fyziologie MeSH
- potkani Wistar MeSH
- systém (enzymů) cytochromů P-450 metabolismus fyziologie MeSH
- triglyceridy metabolismus MeSH
- ztučnělá játra metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glukosa MeSH
- inzulin MeSH
- lipidy MeSH
- systém (enzymů) cytochromů P-450 MeSH
- triglyceridy MeSH
Ovarian hormone deficiency leads to increased body weight, visceral adiposity, fatty liver and disorders associated with menopausal metabolic syndrome. To better understand the underlying mechanisms of these disorders in their early phases of development, we investigated the effect of ovariectomy on lipid and glucose metabolism. Compared to sham-operated controls, ovariectomized Wistar female rats markedly increased whole body and visceral adipose tissue weight (p ˂ 0.05) and exhibited insulin resistance in peripheral tissues. Severe hepatic triglyceride accumulation (p ˂ 0.001) after ovariectomy preceded changes in both serum lipids and glucose intolerance, reflecting alterations in some CYP proteins. Increased CYP2E1 (p ˂ 0.05) and decreased CYP4A (p ˂ 0.001) after ovariectomy reduced fatty acid oxidation and induced hepatic steatosis. Decreased triglyceride metabolism and secretion from the liver contributed to hepatic triglyceride accumulation in response to ovariectomy. In addition, interscapular brown adipose tissue of ovariectomized rats exhibited decreased fatty acid oxidation (p ˂ 0.01), lipogenesis (p ˂ 0.05) and lipolysis (p ˂ 0.05) despite an increase in tissue weight. The results provide evidence that impaired hepatic triglycerides and dysregulation of some CYP450 proteins may have been involved in the development of hepatic steatosis. The low metabolic activity of brown adipose tissue may have contributed to visceral adiposity as well as triglyceride accumulation during the postmenopausal period.
Zobrazit více v PubMed
Dorum A., Tonstad S., Liavaag A.H., Michelsen T.M., Hildrum B., Dahl A.A. Bilateral oophorectomy before 50 years of age is significantly associated with the metabolic syndrome and Framingham risk score: A controlled, population-based study (HUNT-2) Gynecol. Oncol. 2008;109:377–383. doi: 10.1016/j.ygyno.2008.02.025. PubMed DOI
Lin W.Y., Yang W.S., Lee L.T., Chen C.Y., Liu C.S., Lin C.C., Huang K.C. Insulin resistance, obesity, and metabolic syndrome among non-diabetic pre- and post-menopausal women in North Taiwan. Int. J. Obes. 2006;30:912–917. doi: 10.1038/sj.ijo.0803240. PubMed DOI
Tawfik S.H., Mahmoud B.F., Saad M.I., Shehata M., Kamel M.A., Helmy M.H. Similar and additive effects of ovariectomy and diabetes on insulin resistance and lipid metabolism. Biochem. Res. Int. 2015;2015:567945. doi: 10.1155/2015/567945. PubMed DOI PMC
Shen M., Kumar S.P., Shi H. Estradiol regulates insulin signaling and inflammation in adipose tissue. Horm. Mol. Biol. Clin. Investig. 2014;17:99–107. doi: 10.1515/hmbci-2014-0007. PubMed DOI PMC
Nigro M., Santos A.T., Barthem C.S., Louzada R.A., Fortunato R.S., Ketzer L.A., Carvalho D.P., de Meis L. A change in liver metabolism but not in brown adipose tissue thermogenesis is an early event in ovariectomy-induced obesity in rats. Endocrinology. 2014;155:2881–2891. doi: 10.1210/en.2013-1385. PubMed DOI
Schilperoort M., Hoeke G., Kooijman S., Rensen P.C. Relevance of lipid metabolism for brown fat visualization and quantification. Curr. Opin. Lipidol. 2016;27:242–248. doi: 10.1097/MOL.0000000000000296. PubMed DOI
Ruiz J.R., Martinez-Tellez B., Sanchez-Delgado G., Osuna-Prieto F.J., Rensen P.C.N., Boon M.R. Role of Human Brown Fat in Obesity, Metabolism and Cardiovascular Disease: Strategies to Turn Up the Heat. Prog. Cardiovasc. Dis. 2018;61:232–245. doi: 10.1016/j.pcad.2018.07.002. PubMed DOI
Lee P., Greenfield J.R. Non-pharmacological and pharmacological strategies of brown adipose tissue recruitment in humans. Mol. Cell Endocrinol. 2015;418 Pt 2:184–190. doi: 10.1016/j.mce.2015.05.025. PubMed DOI
DiStefano J.K. NAFLD and NASH in Postmenopausal Women: Implications for Diagnosis and Treatment. Endocrinology. 2020;161:bqaa134. doi: 10.1210/endocr/bqaa134. PubMed DOI PMC
Simpson A.E. The cytochrome P450 4 (CYP4) family. Gen. Pharm. 1997;28:351–359. doi: 10.1016/S0306-3623(96)00246-7. PubMed DOI
Gao H., Cao Y., Xia H., Zhu X., Jin Y. CYP4A11 is involved in the development of nonalcoholic fatty liver disease via ROSinduced lipid peroxidation and inflammation. Int. J. Mol. Med. 2020;45:1121–1129. PubMed PMC
Wei Y., Wang D., Moran G., Estrada A., Pagliassotti M.J. Fructose-induced stress signaling in the liver involves methylglyoxal. Nutr. Metab. 2013;10:1–8. doi: 10.1186/1743-7075-10-32. PubMed DOI PMC
Bentley-Lewis R., Koruda K., Seely E.W. The metabolic syndrome in women. Nat. Clin. Pr. Endocrinol. Metab. 2007;3:696–704. doi: 10.1038/ncpendmet0616. PubMed DOI PMC
Chalvon-Demersay T., Blachier F., Tome D., Blais A. Animal Models for the Study of the Relationships between Diet and Obesity: A Focus on Dietary Protein and Estrogen Deficiency. Front. Nutr. 2017;4:5. doi: 10.3389/fnut.2017.00005. PubMed DOI PMC
Brown L.M., Gent L., Davis K., Clegg D.J. Metabolic impact of sex hormones on obesity. Brain Res. 2010;1350:77–85. doi: 10.1016/j.brainres.2010.04.056. PubMed DOI PMC
Maliszewska K., Kretowski A. Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis. Int. J. Mol. Sci. 2021;22:1530. doi: 10.3390/ijms22041530. PubMed DOI PMC
Heeren J., Scheja L. Brown adipose tissue and lipid metabolism. Curr. Opin. Lipidol. 2018;29:180–185. doi: 10.1097/MOL.0000000000000504. PubMed DOI
Kaikaew K., Grefhorst A., Steenbergen J., Swagemakers S.M.A., McLuskey A., Visser J.A. Sex difference in the mouse BAT transcriptome reveals a role of progesterone. J. Mol. Endocrinol. 2021;66:97–113. doi: 10.1530/JME-20-0210. PubMed DOI
Quarta C., Mazza R., Pasquali R., Pagotto U. Role of sex hormones in modulation of brown adipose tissue activity. J. Mol. Endocrinol. 2012;49:R1–R7. doi: 10.1530/JME-12-0043. PubMed DOI
Gonzalez-Garcia I., Tena-Sempere M., Lopez M. Estradiol Regulation of Brown Adipose Tissue Thermogenesis. Adv. Exp. Med. Biol. 2017;1043:315–335. PubMed
Orava J., Nuutila P., Lidell M.E., Oikonen V., Noponen T., Viljanen T., Scheinin M., Taittonen M., Niemi T., Enerback S., et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell. Metab. 2011;14:272–279. doi: 10.1016/j.cmet.2011.06.012. PubMed DOI
Babaei P., Mehdizadeh R., Ansar M.M., Damirchi A. Effects of ovariectomy and estrogen replacement therapy on visceral adipose tissue and serum adiponectin levels in rats. Menopause Int. 2010;16:100–104. doi: 10.1258/mi.2010.010028. PubMed DOI
Laughlin G.A., Barrett-Connor E., May S. Sex-specific determinants of serum adiponectin in older adults: The role of endogenous sex hormones. Int. J. Obes. 2007;31:457–465. doi: 10.1038/sj.ijo.0803427. PubMed DOI
Jo D., Son Y., Yoon G., Song J., Kim O.Y. Role of Adiponectin and Brain Derived Neurotrophic Factor in Metabolic Regulation Involved in Adiposity and Body Fat Browning. J. Clin. Med. 2020;10:56. doi: 10.3390/jcm10010056. PubMed DOI PMC
Yin C., Kang L., Lai C., Zhou J., Shi B., Zhang L., Chen H. Effects of 17beta-estradiol on leptin signaling in anterior pituitary of ovariectomized rats. Exp. Anim. 2017;66:159–166. doi: 10.1538/expanim.16-0087. PubMed DOI PMC
Liu K., Liu P., Liu R., Wu X., Cai M. Relationship between serum leptin levels and bone mineral density: A systematic review and meta-analysis. Clin. Chim. Acta. 2015;444:260–263. doi: 10.1016/j.cca.2015.02.040. PubMed DOI
Zidon T.M., Padilla J., Fritsche K.L., Welly R.J., McCabe L.T., Stricklin O.E., Frank A., Park Y., Clegg D.J., Lubahn D.B., et al. Effects of ERbeta and ERalpha on OVX-induced changes in adiposity and insulin resistance. J. Endocrinol. 2020;245:165–178. doi: 10.1530/JOE-19-0321. PubMed DOI PMC
Szendroedi J., Yoshimura T., Phielix E., Koliaki C., Marcucci M., Zhang D., Jelenik T., Muller J., Herder C., Nowotny P., et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc. Natl. Acad. Sci. USA. 2014;111:9597–9602. doi: 10.1073/pnas.1409229111. PubMed DOI PMC
Geisler C.E., Renquist B.J. Hepatic lipid accumulation: Cause and consequence of dysregulated glucoregulatory hormones. J. Endocrinol. 2017;234:R1–R21. doi: 10.1530/JOE-16-0513. PubMed DOI
Kitson A.P., Marks K.A., Aristizabal Henao J.J., Tupling A.R., Stark K.D. Prevention of hyperphagia prevents ovariectomy-induced triacylglycerol accumulation in liver, but not plasma. Nutr. Res. 2015;35:1085–1094. doi: 10.1016/j.nutres.2015.09.013. PubMed DOI
Medina-Contreras J., Villalobos-Molina R., Zarain-Herzberg A., Balderas-Villalobos J. Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol. Cell. Biochem. 2020;475:261–276. doi: 10.1007/s11010-020-03879-4. PubMed DOI
Patel S.B., Graf G.A., Temel R.E. ABCG5 and ABCG8: More than a defense against xenosterols. J. Lipid Res. 2018;59:1103–1113. doi: 10.1194/jlr.R084244. PubMed DOI PMC
Poruba M., Anzenbacher P., Racova Z., Oliyarnyk O., Huttl M., Malinska H., Markova I., Gurska S., Kazdova L., Vecera R. The effect of combined diet containing n-3 polyunsaturated fatty acids and silymarin on metabolic syndrome in rats. Physiol. Res. 2019;68:S39–S50. doi: 10.33549/physiolres.934322. PubMed DOI
DeBose-Boyd R.A., Ye J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem. Sci. 2018;43:358–368. doi: 10.1016/j.tibs.2018.01.005. PubMed DOI PMC
Ngo Sock E.T., Chapados N.A., Lavoie J.M. LDL receptor and Pcsk9 transcripts are decreased in liver of ovariectomized rats: Effects of exercise training. Horm. Metab. Res. 2014;46:550–555. PubMed
Soffientini U., Caridis A.M., Dolan S., Graham A. Intracellular cholesterol transporters and modulation of hepatic lipid metabolism: Implications for diabetic dyslipidaemia and steatosis. Biochim. Biophys. Acta. 2014;1842:1372–1382. doi: 10.1016/j.bbalip.2014.07.002. PubMed DOI
Palmisano B.T., Zhu L., Stafford J.M. Role of Estrogens in the Regulation of Liver Lipid Metabolism. Adv. Exp. Med. Biol. 2017;1043:227–256. PubMed PMC
Zhang Y., Klaassen C.D. Hormonal regulation of Cyp4a isoforms in mouse liver and kidney. Xenobiotica. 2013;43:1055–1063. doi: 10.3109/00498254.2013.797622. PubMed DOI PMC
Enriquez A., Leclercq I., Farrell G.C., Robertson G. Altered expression of hepatic CYP2E1 and CYP4A in obese, diabetic ob/ob mice, and fa/fa Zucker rats. Biochem. Biophys. Res. Commun. 1999;255:300–306. doi: 10.1006/bbrc.1999.0202. PubMed DOI
Leclercq I.A., Farrell G.C., Field J., Bell D.R., Gonzalez F.J., Robertson G.R. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J. Clin. Investig. 2000;105:1067–1075. doi: 10.1172/JCI8814. PubMed DOI PMC
Zhang X., Li S., Zhou Y., Su W., Ruan X., Wang B., Zheng F., Warner M., Gustafsson J.A., Guan Y. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis. Proc. Natl. Acad. Sci. USA. 2017;114:3181–3185. doi: 10.1073/pnas.1700172114. PubMed DOI PMC
Jamwal R., Barlock B.J. Nonalcoholic Fatty Liver Disease (NAFLD) and Hepatic Cytochrome P450 (CYP) Enzymes. Pharmaceuticals. 2020;13:222. doi: 10.3390/ph13090222. PubMed DOI PMC
Huttl M., Markova I., Miklankova D., Makovicky P., Pelikanova T., Seda O., Sedova L., Malinska H. Adverse Effects of Methylglyoxal on Transcriptome and Metabolic Changes in Visceral Adipose Tissue in a Prediabetic Rat Model. Antioxidants. 2020;9:803. doi: 10.3390/antiox9090803. PubMed DOI PMC
Neves C., Rodrigues T., Sereno J., Simoes C., Castelhano J., Goncalves J., Bento G., Goncalves S., Seica R., Domingues M.R., et al. Dietary Glycotoxins Impair Hepatic Lipidemic Profile in Diet-Induced Obese Rats Causing Hepatic Oxidative Stress and Insulin Resistance. Oxid. Med. Cell. Longev. 2019;2019:6362910. doi: 10.1155/2019/6362910. PubMed DOI PMC
Matafome P., Sena C., Seica R. Methylglyoxal, obesity, and diabetes. Endocrine. 2013;43:472–484. doi: 10.1007/s12020-012-9795-8. PubMed DOI
Malinska H., Huttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI
Pravenec M., Landa V., Zidek V., Musilova A., Kazdova L., Qi N., Wang J., St Lezin E., Kurtz T.W. Transgenic expression of CD36 in the spontaneously hypertensive rat is associated with amelioration of metabolic disturbances but has no effect on hypertension. Physiol. Res. 2003;52:681–688. PubMed
Thornalley P.J., Langborg A., Minhas H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999;344 Pt 1:109–116. doi: 10.1042/bj3440109. PubMed DOI PMC
Arai M., Nihonmatsu-Kikuchi N., Itokawa M., Rabbani N., Thornalley P.J. Measurement of glyoxalase activities. Biochem. Soc. Trans. 2014;42:491–494. doi: 10.1042/BST20140010. PubMed DOI
Poruba M., Matuskova Z., Huttl M., Malinska H., Oliyarnyk O., Markova I., Gurska S., Kazdova L., Vecera R. Fenofibrate Decreases Hepatic P-Glycoprotein in a Rat Model of Hereditary Hypertriglyceridemia. Front. Pharm. 2019;10:56. doi: 10.3389/fphar.2019.00056. PubMed DOI PMC