Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia

. 2021 Apr 26 ; 22 (9) : . [epub] 20210426

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33926097

Grantová podpora
IKEM, IN 00023001 Ministry of Health of the Czech Republic under its conceptual development of research organisations programme
NU20-01-00083 Ministry of Health of the Czech Republic
IGA_LF_2021_013. Ministry of Health of the Czech Republic

Ovarian hormone deficiency leads to increased body weight, visceral adiposity, fatty liver and disorders associated with menopausal metabolic syndrome. To better understand the underlying mechanisms of these disorders in their early phases of development, we investigated the effect of ovariectomy on lipid and glucose metabolism. Compared to sham-operated controls, ovariectomized Wistar female rats markedly increased whole body and visceral adipose tissue weight (p ˂ 0.05) and exhibited insulin resistance in peripheral tissues. Severe hepatic triglyceride accumulation (p ˂ 0.001) after ovariectomy preceded changes in both serum lipids and glucose intolerance, reflecting alterations in some CYP proteins. Increased CYP2E1 (p ˂ 0.05) and decreased CYP4A (p ˂ 0.001) after ovariectomy reduced fatty acid oxidation and induced hepatic steatosis. Decreased triglyceride metabolism and secretion from the liver contributed to hepatic triglyceride accumulation in response to ovariectomy. In addition, interscapular brown adipose tissue of ovariectomized rats exhibited decreased fatty acid oxidation (p ˂ 0.01), lipogenesis (p ˂ 0.05) and lipolysis (p ˂ 0.05) despite an increase in tissue weight. The results provide evidence that impaired hepatic triglycerides and dysregulation of some CYP450 proteins may have been involved in the development of hepatic steatosis. The low metabolic activity of brown adipose tissue may have contributed to visceral adiposity as well as triglyceride accumulation during the postmenopausal period.

Zobrazit více v PubMed

Dorum A., Tonstad S., Liavaag A.H., Michelsen T.M., Hildrum B., Dahl A.A. Bilateral oophorectomy before 50 years of age is significantly associated with the metabolic syndrome and Framingham risk score: A controlled, population-based study (HUNT-2) Gynecol. Oncol. 2008;109:377–383. doi: 10.1016/j.ygyno.2008.02.025. PubMed DOI

Lin W.Y., Yang W.S., Lee L.T., Chen C.Y., Liu C.S., Lin C.C., Huang K.C. Insulin resistance, obesity, and metabolic syndrome among non-diabetic pre- and post-menopausal women in North Taiwan. Int. J. Obes. 2006;30:912–917. doi: 10.1038/sj.ijo.0803240. PubMed DOI

Tawfik S.H., Mahmoud B.F., Saad M.I., Shehata M., Kamel M.A., Helmy M.H. Similar and additive effects of ovariectomy and diabetes on insulin resistance and lipid metabolism. Biochem. Res. Int. 2015;2015:567945. doi: 10.1155/2015/567945. PubMed DOI PMC

Shen M., Kumar S.P., Shi H. Estradiol regulates insulin signaling and inflammation in adipose tissue. Horm. Mol. Biol. Clin. Investig. 2014;17:99–107. doi: 10.1515/hmbci-2014-0007. PubMed DOI PMC

Nigro M., Santos A.T., Barthem C.S., Louzada R.A., Fortunato R.S., Ketzer L.A., Carvalho D.P., de Meis L. A change in liver metabolism but not in brown adipose tissue thermogenesis is an early event in ovariectomy-induced obesity in rats. Endocrinology. 2014;155:2881–2891. doi: 10.1210/en.2013-1385. PubMed DOI

Schilperoort M., Hoeke G., Kooijman S., Rensen P.C. Relevance of lipid metabolism for brown fat visualization and quantification. Curr. Opin. Lipidol. 2016;27:242–248. doi: 10.1097/MOL.0000000000000296. PubMed DOI

Ruiz J.R., Martinez-Tellez B., Sanchez-Delgado G., Osuna-Prieto F.J., Rensen P.C.N., Boon M.R. Role of Human Brown Fat in Obesity, Metabolism and Cardiovascular Disease: Strategies to Turn Up the Heat. Prog. Cardiovasc. Dis. 2018;61:232–245. doi: 10.1016/j.pcad.2018.07.002. PubMed DOI

Lee P., Greenfield J.R. Non-pharmacological and pharmacological strategies of brown adipose tissue recruitment in humans. Mol. Cell Endocrinol. 2015;418 Pt 2:184–190. doi: 10.1016/j.mce.2015.05.025. PubMed DOI

DiStefano J.K. NAFLD and NASH in Postmenopausal Women: Implications for Diagnosis and Treatment. Endocrinology. 2020;161:bqaa134. doi: 10.1210/endocr/bqaa134. PubMed DOI PMC

Simpson A.E. The cytochrome P450 4 (CYP4) family. Gen. Pharm. 1997;28:351–359. doi: 10.1016/S0306-3623(96)00246-7. PubMed DOI

Gao H., Cao Y., Xia H., Zhu X., Jin Y. CYP4A11 is involved in the development of nonalcoholic fatty liver disease via ROSinduced lipid peroxidation and inflammation. Int. J. Mol. Med. 2020;45:1121–1129. PubMed PMC

Wei Y., Wang D., Moran G., Estrada A., Pagliassotti M.J. Fructose-induced stress signaling in the liver involves methylglyoxal. Nutr. Metab. 2013;10:1–8. doi: 10.1186/1743-7075-10-32. PubMed DOI PMC

Bentley-Lewis R., Koruda K., Seely E.W. The metabolic syndrome in women. Nat. Clin. Pr. Endocrinol. Metab. 2007;3:696–704. doi: 10.1038/ncpendmet0616. PubMed DOI PMC

Chalvon-Demersay T., Blachier F., Tome D., Blais A. Animal Models for the Study of the Relationships between Diet and Obesity: A Focus on Dietary Protein and Estrogen Deficiency. Front. Nutr. 2017;4:5. doi: 10.3389/fnut.2017.00005. PubMed DOI PMC

Brown L.M., Gent L., Davis K., Clegg D.J. Metabolic impact of sex hormones on obesity. Brain Res. 2010;1350:77–85. doi: 10.1016/j.brainres.2010.04.056. PubMed DOI PMC

Maliszewska K., Kretowski A. Brown Adipose Tissue and Its Role in Insulin and Glucose Homeostasis. Int. J. Mol. Sci. 2021;22:1530. doi: 10.3390/ijms22041530. PubMed DOI PMC

Heeren J., Scheja L. Brown adipose tissue and lipid metabolism. Curr. Opin. Lipidol. 2018;29:180–185. doi: 10.1097/MOL.0000000000000504. PubMed DOI

Kaikaew K., Grefhorst A., Steenbergen J., Swagemakers S.M.A., McLuskey A., Visser J.A. Sex difference in the mouse BAT transcriptome reveals a role of progesterone. J. Mol. Endocrinol. 2021;66:97–113. doi: 10.1530/JME-20-0210. PubMed DOI

Quarta C., Mazza R., Pasquali R., Pagotto U. Role of sex hormones in modulation of brown adipose tissue activity. J. Mol. Endocrinol. 2012;49:R1–R7. doi: 10.1530/JME-12-0043. PubMed DOI

Gonzalez-Garcia I., Tena-Sempere M., Lopez M. Estradiol Regulation of Brown Adipose Tissue Thermogenesis. Adv. Exp. Med. Biol. 2017;1043:315–335. PubMed

Orava J., Nuutila P., Lidell M.E., Oikonen V., Noponen T., Viljanen T., Scheinin M., Taittonen M., Niemi T., Enerback S., et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell. Metab. 2011;14:272–279. doi: 10.1016/j.cmet.2011.06.012. PubMed DOI

Babaei P., Mehdizadeh R., Ansar M.M., Damirchi A. Effects of ovariectomy and estrogen replacement therapy on visceral adipose tissue and serum adiponectin levels in rats. Menopause Int. 2010;16:100–104. doi: 10.1258/mi.2010.010028. PubMed DOI

Laughlin G.A., Barrett-Connor E., May S. Sex-specific determinants of serum adiponectin in older adults: The role of endogenous sex hormones. Int. J. Obes. 2007;31:457–465. doi: 10.1038/sj.ijo.0803427. PubMed DOI

Jo D., Son Y., Yoon G., Song J., Kim O.Y. Role of Adiponectin and Brain Derived Neurotrophic Factor in Metabolic Regulation Involved in Adiposity and Body Fat Browning. J. Clin. Med. 2020;10:56. doi: 10.3390/jcm10010056. PubMed DOI PMC

Yin C., Kang L., Lai C., Zhou J., Shi B., Zhang L., Chen H. Effects of 17beta-estradiol on leptin signaling in anterior pituitary of ovariectomized rats. Exp. Anim. 2017;66:159–166. doi: 10.1538/expanim.16-0087. PubMed DOI PMC

Liu K., Liu P., Liu R., Wu X., Cai M. Relationship between serum leptin levels and bone mineral density: A systematic review and meta-analysis. Clin. Chim. Acta. 2015;444:260–263. doi: 10.1016/j.cca.2015.02.040. PubMed DOI

Zidon T.M., Padilla J., Fritsche K.L., Welly R.J., McCabe L.T., Stricklin O.E., Frank A., Park Y., Clegg D.J., Lubahn D.B., et al. Effects of ERbeta and ERalpha on OVX-induced changes in adiposity and insulin resistance. J. Endocrinol. 2020;245:165–178. doi: 10.1530/JOE-19-0321. PubMed DOI PMC

Szendroedi J., Yoshimura T., Phielix E., Koliaki C., Marcucci M., Zhang D., Jelenik T., Muller J., Herder C., Nowotny P., et al. Role of diacylglycerol activation of PKCtheta in lipid-induced muscle insulin resistance in humans. Proc. Natl. Acad. Sci. USA. 2014;111:9597–9602. doi: 10.1073/pnas.1409229111. PubMed DOI PMC

Geisler C.E., Renquist B.J. Hepatic lipid accumulation: Cause and consequence of dysregulated glucoregulatory hormones. J. Endocrinol. 2017;234:R1–R21. doi: 10.1530/JOE-16-0513. PubMed DOI

Kitson A.P., Marks K.A., Aristizabal Henao J.J., Tupling A.R., Stark K.D. Prevention of hyperphagia prevents ovariectomy-induced triacylglycerol accumulation in liver, but not plasma. Nutr. Res. 2015;35:1085–1094. doi: 10.1016/j.nutres.2015.09.013. PubMed DOI

Medina-Contreras J., Villalobos-Molina R., Zarain-Herzberg A., Balderas-Villalobos J. Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol. Cell. Biochem. 2020;475:261–276. doi: 10.1007/s11010-020-03879-4. PubMed DOI

Patel S.B., Graf G.A., Temel R.E. ABCG5 and ABCG8: More than a defense against xenosterols. J. Lipid Res. 2018;59:1103–1113. doi: 10.1194/jlr.R084244. PubMed DOI PMC

Poruba M., Anzenbacher P., Racova Z., Oliyarnyk O., Huttl M., Malinska H., Markova I., Gurska S., Kazdova L., Vecera R. The effect of combined diet containing n-3 polyunsaturated fatty acids and silymarin on metabolic syndrome in rats. Physiol. Res. 2019;68:S39–S50. doi: 10.33549/physiolres.934322. PubMed DOI

DeBose-Boyd R.A., Ye J. SREBPs in Lipid Metabolism, Insulin Signaling, and Beyond. Trends Biochem. Sci. 2018;43:358–368. doi: 10.1016/j.tibs.2018.01.005. PubMed DOI PMC

Ngo Sock E.T., Chapados N.A., Lavoie J.M. LDL receptor and Pcsk9 transcripts are decreased in liver of ovariectomized rats: Effects of exercise training. Horm. Metab. Res. 2014;46:550–555. PubMed

Soffientini U., Caridis A.M., Dolan S., Graham A. Intracellular cholesterol transporters and modulation of hepatic lipid metabolism: Implications for diabetic dyslipidaemia and steatosis. Biochim. Biophys. Acta. 2014;1842:1372–1382. doi: 10.1016/j.bbalip.2014.07.002. PubMed DOI

Palmisano B.T., Zhu L., Stafford J.M. Role of Estrogens in the Regulation of Liver Lipid Metabolism. Adv. Exp. Med. Biol. 2017;1043:227–256. PubMed PMC

Zhang Y., Klaassen C.D. Hormonal regulation of Cyp4a isoforms in mouse liver and kidney. Xenobiotica. 2013;43:1055–1063. doi: 10.3109/00498254.2013.797622. PubMed DOI PMC

Enriquez A., Leclercq I., Farrell G.C., Robertson G. Altered expression of hepatic CYP2E1 and CYP4A in obese, diabetic ob/ob mice, and fa/fa Zucker rats. Biochem. Biophys. Res. Commun. 1999;255:300–306. doi: 10.1006/bbrc.1999.0202. PubMed DOI

Leclercq I.A., Farrell G.C., Field J., Bell D.R., Gonzalez F.J., Robertson G.R. CYP2E1 and CYP4A as microsomal catalysts of lipid peroxides in murine nonalcoholic steatohepatitis. J. Clin. Investig. 2000;105:1067–1075. doi: 10.1172/JCI8814. PubMed DOI PMC

Zhang X., Li S., Zhou Y., Su W., Ruan X., Wang B., Zheng F., Warner M., Gustafsson J.A., Guan Y. Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis. Proc. Natl. Acad. Sci. USA. 2017;114:3181–3185. doi: 10.1073/pnas.1700172114. PubMed DOI PMC

Jamwal R., Barlock B.J. Nonalcoholic Fatty Liver Disease (NAFLD) and Hepatic Cytochrome P450 (CYP) Enzymes. Pharmaceuticals. 2020;13:222. doi: 10.3390/ph13090222. PubMed DOI PMC

Huttl M., Markova I., Miklankova D., Makovicky P., Pelikanova T., Seda O., Sedova L., Malinska H. Adverse Effects of Methylglyoxal on Transcriptome and Metabolic Changes in Visceral Adipose Tissue in a Prediabetic Rat Model. Antioxidants. 2020;9:803. doi: 10.3390/antiox9090803. PubMed DOI PMC

Neves C., Rodrigues T., Sereno J., Simoes C., Castelhano J., Goncalves J., Bento G., Goncalves S., Seica R., Domingues M.R., et al. Dietary Glycotoxins Impair Hepatic Lipidemic Profile in Diet-Induced Obese Rats Causing Hepatic Oxidative Stress and Insulin Resistance. Oxid. Med. Cell. Longev. 2019;2019:6362910. doi: 10.1155/2019/6362910. PubMed DOI PMC

Matafome P., Sena C., Seica R. Methylglyoxal, obesity, and diabetes. Endocrine. 2013;43:472–484. doi: 10.1007/s12020-012-9795-8. PubMed DOI

Malinska H., Huttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI

Pravenec M., Landa V., Zidek V., Musilova A., Kazdova L., Qi N., Wang J., St Lezin E., Kurtz T.W. Transgenic expression of CD36 in the spontaneously hypertensive rat is associated with amelioration of metabolic disturbances but has no effect on hypertension. Physiol. Res. 2003;52:681–688. PubMed

Thornalley P.J., Langborg A., Minhas H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999;344 Pt 1:109–116. doi: 10.1042/bj3440109. PubMed DOI PMC

Arai M., Nihonmatsu-Kikuchi N., Itokawa M., Rabbani N., Thornalley P.J. Measurement of glyoxalase activities. Biochem. Soc. Trans. 2014;42:491–494. doi: 10.1042/BST20140010. PubMed DOI

Poruba M., Matuskova Z., Huttl M., Malinska H., Oliyarnyk O., Markova I., Gurska S., Kazdova L., Vecera R. Fenofibrate Decreases Hepatic P-Glycoprotein in a Rat Model of Hereditary Hypertriglyceridemia. Front. Pharm. 2019;10:56. doi: 10.3389/fphar.2019.00056. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...