Hypolipidemic and insulin sensitizing effects of salsalate beyond suppressing inflammation in a prediabetic rat model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37077818
PubMed Central
PMC10106727
DOI
10.3389/fphar.2023.1117683
PII: 1117683
Knihovny.cz E-zdroje
- Klíčová slova
- cytochrome P450, lipid metabolism, low-grade inflammation, oxidative stress, prediabetes, salsalate,
- Publikační typ
- časopisecké články MeSH
Background and aims: Low-grade chronic inflammation plays an important role in the pathogenesis of metabolic syndrome, type 2 diabetes and their complications. In this study, we investigated the effects of salsalate, a non-steroidal anti-inflammatory drug, on metabolic disturbances in an animal model of prediabetes-a strain of non-obese hereditary hypertriglyceridemic (HHTg) rats. Materials and Methods: Adult male HHTg and Wistar control rats were fed a standard diet without or with salsalate delivering a daily dose of 200 mg/kg of body weight for 6 weeks. Tissue sensitivity to insulin action was measured ex vivo according to basal and insulin-stimulated 14C-U-glucose incorporation into muscle glycogen or adipose tissue lipids. The concentration of methylglyoxal and glutathione was determined using the HPLC-method. Gene expression was measured by quantitative RT-PCR. Results: Salsalate treatment of HHTg rats when compared to their untreated controls was associated with significant amelioration of inflammation, dyslipidemia and insulin resistance. Specificaly, salsalate treatment was associated with reduced inflammation, oxidative and dicarbonyl stress when inflammatory markers, lipoperoxidation products and methylglyoxal levels were significantly decreased in serum and tissues. In addition, salsalate ameliorated glycaemia and reduced serum lipid concentrations. Insulin sensitivity in visceral adipose tissue and skeletal muscle was significantly increased after salsalate administration. Further, salsalate markedly reduced hepatic lipid accumulation (triglycerides -29% and cholesterol -14%). Hypolipidemic effects of salsalate were associated with differential expression of genes coding for enzymes and transcription factors involved in lipid synthesis (Fas, Hmgcr), oxidation (Pparα) and transport (Ldlr, Abc transporters), as well as changes in gene expression of cytochrome P450 proteins, in particular decreased Cyp7a and increased Cyp4a isoforms. Conclusion: These results demonstrate important anti-inflammatory and anti-oxidative effects of salsalate that were associated with reduced dyslipidemia and insulin resistance in HHTg rats. Hypolipidemic effects of salsalate were associated with differential expression of genes regulating lipid metabolism in the liver. These results suggest potential beneficial use of salsalate in prediabetic patients with NAFLD symptoms.
Center for Experimental Medicine Institute for Clinical and Experimental Medicine Prague Czech
Department of Pathology 3rd Faculty of Medicine Charles University Prague Czech
Department of Pharmacology Faculty of Medicine and Dentistry Palacky University Olomouc Czech
Institute of Physiology Czech Academy of Sciences Prague Czech
Zobrazit více v PubMed
Baker R. G., Hayden M. S., Ghosh S. (2011). NF-κB, inflammation, and metabolic disease. Cell Metab. 13, 11–22. 10.1016/j.cmet.2010.12.008 PubMed DOI PMC
Barzilay J. I., Jablonski K. A., Fonseca V., Shoelson S. E., Goldfine A. B., Strauch C., et al. (2014). The impact of salsalate treatment on serum levels of advanced glycation end products in type 2 diabetes. Diabetes Care 37, 1083–1091. 10.2337/dc13-1527 PubMed DOI PMC
Chiang J. Y. L., Ferrell J. M. (2020). Up to date on cholesterol 7 alpha-hydroxylase (CYP7A1) in bile acid synthesis. Liver Res. 4, 47–63. 10.1016/j.livres.2020.05.001 PubMed DOI PMC
Ershov P. V., Yablokov E., Zgoda V., Mezentsev Y., Gnedenko O., Kaluzhskiy L., et al. (2021). A new insight into subinteractomes of functional antagonists: Thromboxane (CYP5A1) and prostacyclin (CYP8A1) synthases. Cell Biol. Int. 45, 1175–1182. 10.1002/cbin.11564 PubMed DOI
Faghihimani E., Aminorroaya A., Rezvanian H., Adibi P., Ismail-Beigi F., Amini M. (2012). Reduction of insulin resistance and plasma glucose level by salsalate treatment in persons with prediabetes. Endocr. Pract. 18, 826–833. 10.4158/EP12064.OR PubMed DOI
Goldfine A. B., Conlin P. R., Halperin F., Koska J., Permana P., Schwenke D., et al. (2013). A randomised trial of salsalate for insulin resistance and cardiovascular risk factors in persons with abnormal glucose tolerance. Diabetologia 56, 714–723. 10.1007/s00125-012-2819-3 PubMed DOI PMC
Goldfine A. B., Fonseca V., Jablonski K. A., Pyle L., Staten M. A., Shoelson S. E., et al. (2010). The effects of salsalate on glycemic control in patients with type 2 diabetes: A randomized trial. Ann. Intern Med. 152, 346–357. 10.7326/0003-4819-152-6-201003160-00004 PubMed DOI PMC
Goldfine A. B., Silver R., Aldhahi W., Cai D., Tatro E., Lee J., et al. (2008). Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin. Transl. Sci. 1, 36–43. 10.1111/j.1752-8062.2008.00026.x PubMed DOI PMC
Han F., Li X., Yang J., Liu H., Zhang Y., Yang X., et al. (2019). Salsalate prevents beta-cell dedifferentiation in OLETF rats with type 2 diabetes through Notch1 pathway. Aging Dis. 10, 719–730. 10.14336/AD.2018.1221 PubMed DOI PMC
Hardy L. M., Frisdal E., Le Goff W. (2017). Critical role of the human ATP-binding cassette G1 transporter in cardiometabolic diseases. Int. J. Mol. Sci. 18, 1892. 10.3390/ijms18091892 PubMed DOI PMC
Hawley S. A., Fullerton M. D., Ross F. A., Schertzer J. D., Chevtzoff C., Walker K. J., et al. (2012). The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336, 918–922. 10.1126/science.1215327 PubMed DOI PMC
Higgs G. A., Salmon J. A., Henderson B., Vane J. R. (1987). Pharmacokinetics of aspirin and salicylate in relation to inhibition of arachidonate cyclooxygenase and antiinflammatory activity. Proc. Natl. Acad. Sci. U. S. A. 84, 1417–1420. 10.1073/pnas.84.5.1417 PubMed DOI PMC
Huttl M., Markova I., Miklankova D., Makovicky P., Pelikanova T., Seda O., et al. (2020). Adverse effects of methylglyoxal on transcriptome and metabolic changes in visceral adipose tissue in a prediabetic rat model. Antioxidants (Basel) 9, 803. 10.3390/antiox9090803 PubMed DOI PMC
Jamwal R., Barlock B. J. (2020). Nonalcoholic fatty liver disease (NAFLD) and hepatic cytochrome P450 (CYP) enzymes. Pharm. (Basel) 13, 222. 10.3390/ph13090222 PubMed DOI PMC
Kleiner D. E., Brunt E. M., Van Natta M., Behling C., Contos M. J., Cummings O. W., et al. (2005). Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 1313–1321. 10.1002/hep.20701 PubMed DOI
Liang W., Verschuren L., Mulder P., van der Hoorn J. W., Verheij J., van Dam A. D., et al. (2015). Salsalate attenuates diet induced non-alcoholic steatohepatitis in mice by decreasing lipogenic and inflammatory processes. Br. J. Pharmacol. 172, 5293–5305. 10.1111/bph.13315 PubMed DOI PMC
Malinska H., Huttl M., Miklankova D., Trnovska J., Zapletalova I., Poruba M., et al. (2021). Ovariectomy-induced hepatic lipid and cytochrome P450 dysmetabolism precedes serum dyslipidemia. Int. J. Mol. Sci. 22, 4527. 10.3390/ijms22094527 PubMed DOI PMC
Malinska H., Huttl M., Oliyarnyk O., Bratova M., Kazdova L. (2015). Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition 31, 1045–1051. 10.1016/j.nut.2015.03.011 PubMed DOI
Morris H. G., Sherman N. A., McQuain C., Golglust M. B., Chang S. F., Harrison L. I. (1985). Effects of salsalate (nonacetylated salicylate) and aspirin on serum prostaglandins in humans. Ther. Drug Monit. 7, 435–438. 10.1097/00007691-198512000-00012 PubMed DOI
Neves C., Rodrigues T., Sereno J., Simoes C., Castelhano J., Goncalves J., et al. (2019). Dietary glycotoxins impair hepatic lipidemic profile in diet-induced obese rats causing hepatic oxidative stress and insulin resistance. Oxid. Med. Cell Longev. 2019, 6362910. 10.1155/2019/6362910 PubMed DOI PMC
Nie L., Yuan X. L., Jiang K. T., Jiang Y. H., Yuan J., Luo L., et al. (2017). Salsalate activates skeletal muscle thermogenesis and protects mice from high-fat diet induced metabolic dysfunction. EBioMedicine 23, 136–145. 10.1016/j.ebiom.2017.08.004 PubMed DOI PMC
Penesova A., Koska J., Ortega E., Bunt J. C., Bogardus C., de Courten B. (2015). Salsalate has no effect on insulin secretion but decreases insulin clearance: A randomized, placebo-controlled trial in subjects without diabetes. Diabetes Obes. Metab. 17, 608–612. 10.1111/dom.12450 PubMed DOI
Poruba M., Matuskova Z., Huttl M., Malinska H., Oliyarnyk O., Markova I., et al. (2019). Fenofibrate decreases hepatic P-glycoprotein in a rat model of hereditary hypertriglyceridemia. Front. Pharmacol. 10, 56. 10.3389/fphar.2019.00056 PubMed DOI PMC
Rumore M. M., Kim K. S. (2010). Potential role of salicylates in type 2 diabetes. Ann. Pharmacother. 44, 1207–1221. 10.1345/aph.1M483 PubMed DOI
Ryu J. S., Lee M., Mun S. J., Hong S. H., Lee H. J., Ahn H. S., et al. (2019). Targeting CYP4A attenuates hepatic steatosis in a novel multicellular organotypic liver model. J. Biol. Eng. 13, 69. 10.1186/s13036-019-0198-8 PubMed DOI PMC
Salastekar N., Desai T., Hauser T., Schaefer E. J., Fowler K., Joseph S., et al. (2017). Salsalate improves glycaemia in overweight persons with diabetes risk factors of stable statin-treated cardiovascular disease: A 30-month randomized placebo-controlled trial. Diabetes Obes. Metab. 19, 1458–1462. 10.1111/dom.12940 PubMed DOI PMC
Scheiman J. M., Elta G. H. (1990). Gastroduodenal mucosal damage with salsalate versus aspirin: Results of experimental models and endoscopic studies in humans. Semin. Arthritis Rheum. 20, 121–127. 10.1016/0049-0172(90)90025-b PubMed DOI
Smith B. K., Ford R. J., Desjardins E. M., Green A. E., Hughes M. C., Houde V. P., et al. (2016). Salsalate (salicylate) uncouples mitochondria, improves glucose homeostasis, and reduces liver lipids independent of AMPK-β1. Diabetes 65, 3352–3361. 10.2337/db16-0564 PubMed DOI PMC
Thornalley P. J., Langborg A., Minhas H. S. (1999). Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 344, 109–116. 10.1042/bj3440109 PubMed DOI PMC
Trnovska J., Silhavy J., Kuda O., Landa V., Zidek V., Mlejnek P., et al. (2017). Salsalate ameliorates metabolic disturbances by reducing inflammation in spontaneously hypertensive rats expressing human C-reactive protein and by activating Brown adipose tissue in nontransgenic controls. PLoS One 12, e0179063. 10.1371/journal.pone.0179063 PubMed DOI PMC
Vane J. R. (2002). Biomedicine. Back to an aspirin a day? Science 296, 474–475. 10.1126/science.1071702 PubMed DOI
Wang X., DuBois D. C., Cao Y., Jusko W. J., Almon R. R. (2014). Diabetes disease progression in goto-kakizaki rats: Effects of salsalate treatment. Diabetes Metab. Syndr. Obes. 7, 381–389. 10.2147/DMSO.S65818 PubMed DOI PMC
Wu H., Ballantyn e. C. M. (2020). Metabolic inflammation and insulin resistance in obesity. Circ. Res. 126, 1549–1564. 10.1161/CIRCRESAHA.119.315896 PubMed DOI PMC
Yuan M., Konstantopoulos N., Lee J., Hansen L., Li Z. W., Karin M., et al. (2001). Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293, 1673–1677. 10.1126/science.1061620 PubMed DOI
Zhang X., Cui X., Jin X., Han F., Wang J., Yang X., et al. (2020). Preventive role of salsalate in diabetes is associated with reducing intestinal inflammation through improvement of gut dysbiosis in ZDF rats. Front. Pharmacol. 11, 300. 10.3389/fphar.2020.00300 PubMed DOI PMC
Zhang X., Li S., Zhou Y., Su W., Ruan X., Wang B., et al. (2017). Ablation of cytochrome P450 omega-hydroxylase 4A14 gene attenuates hepatic steatosis and fibrosis. Proc. Natl. Acad. Sci. U. S. A. 114, 3181–3185. 10.1073/pnas.1700172114 PubMed DOI PMC
Zhang Y., Klaassen C. D. (2013). Hormonal regulation of Cyp4a isoforms in mouse liver and kidney. Xenobiotica 43, 1055–1063. 10.3109/00498254.2013.797622 PubMed DOI PMC
Zicha J., Pechánová O., Cacanyiová S., Cebová M., Kristek F., Török J., et al. (2006). Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res. 55, S49–S63. 10.33549/physiolres.930000.55.S1.49 PubMed DOI