• This record comes from PubMed

Visceral Adipose Tissue Inflammation and Vascular Complications in a Rat Model with Severe Dyslipidemia: Sex Differences and PAI-1 Tissue Involvement

. 2024 Dec 27 ; 15 (1) : . [epub] 20241227

Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
IKEM, 00023001 The Ministry of Health of the Czech Republic
INTER-EXCELLENCE II, LUASK22012 The Ministry of Education, Younth and Sports of the Czech Republic
SK-CZ-RD-20-0102 The Slovak Research and Development Agency

We investigated the sex-dependent effects of inflammatory responses in visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT), as well as hematological status, in relation to cardiovascular disorders associated with prediabetes. Using male and female hereditary hypertriglyceridemic (HHTg) rats-a nonobese prediabetic model featuring dyslipidemia, hepatic steatosis, and insulin resistance-we found that HHTg females exhibited more pronounced hypertriglyceridemia than males, while HHTg males had higher non-fasting glucose levels. Additionally, HHTg females had higher platelet counts, larger platelet volumes, and lower antithrombin inhibitory activity. Regarding low-grade chronic inflammation, HHTg males exhibited increased serum leptin and leukocyte levels, while females had increased serum interleukin-6 (IL-6). Both sexes had increased circulating plasminogen activator inhibitor-1 (PAI-1), higher PAI-1 gene expression in VAT and PVAT, and elevated intercellular adhesion molecule-1 (ICAM-1) gene expression in the aorta, contributing to endothelial dysfunction in the HHTg strain. However, HHTg females had lower tumor necrosis factor alpha (TNFα) gene expression in the aorta. Severe dyslipidemia in this prediabetic model was associated with hypercoagulation and low-grade chronic inflammation. The increase in PAI-1 expression in both VAT and PVAT seems to indicate a link between inflammation and vascular dysfunction. Despite the more pronounced dyslipidemia and procoagulation status in females, their milder inflammatory response may reflect an association between reduced cardiovascular damage and prediabetes.

See more in PubMed

Zafar U., Khaliq S., Ahmad H.U., Manzoor S., Lone K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones. 2018;17:299–313. doi: 10.1007/s42000-018-0051-3. PubMed DOI

Broni E.K., Ndumele C.E., Echouffo-Tcheugui J.B., Kalyani R.R., Bennett W.L., Michos E.D. The Diabetes-Cardiovascular Connection in Women: Understanding the Known Risks, Outcomes, and Implications for Care. Curr. Diabetes Rep. 2022;22:11–25. doi: 10.1007/s11892-021-01444-x. PubMed DOI

Russo I. The prothrombotic tendency in metabolic syndrome: Focus on the potential mechanisms involved in impaired haemostasis and fibrinolytic balance. Scientifica. 2012;2012:525374. doi: 10.6064/2012/525374. PubMed DOI PMC

Zhang Z., Rodriguez M., Zheng Z. Clot or Not? Reviewing the Reciprocal Regulation between Lipids and Blood Clotting. Arterioscler. Thromb. Vasc. Biol. 2024;44:533–544. doi: 10.1161/ATVBAHA.123.318286. PubMed DOI PMC

Gugliucci A. Biomarkers of dysfunctional visceral fat. Adv. Clin. Chem. 2022;109:1–30. PubMed

Ragino Y.I., Stakhneva E.M., Polonskaya Y.V., Kashtanova E.V. The Role of Secretory Activity Molecules of Visceral Adipocytes in Abdominal Obesity in the Development of Cardiovascular Disease: A Review. Biomolecules. 2020;10:374. doi: 10.3390/biom10030374. PubMed DOI PMC

Kaji H. Adipose Tissue-Derived Plasminogen Activator Inhibitor-1 Function and Regulation. Compr. Physiol. 2016;6:1873–1896. PubMed

Morrow G.B., Mutch N.J. Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1) Semin. Thromb. Hemost. 2023;49:305–313. doi: 10.1055/s-0042-1758791. PubMed DOI

Zicha J., Pechanova O., Cacanyiova S., Cebova M., Kristek F., Torok J., Simko F., Dobesova Z., Kunes J. Hereditary hypertriglyceridemic rat: A suitable model of cardiovascular disease and metabolic syndrome? Physiol. Res. 2006;55((Suppl. S1)):S49–S63. doi: 10.33549/physiolres.930000.55.S1.49. PubMed DOI

Vrana A., Kazdova L. The hereditary hypertriglyceridemic nonobese rat: An experimental model of human hypertriglyceridemia. Transplant. Proc. 1990;22:2579. PubMed

Cacanyiova S., Berenyiova A., Malinska H., Huttl M., Markova I., Aydemir B.G., Garaiova V., Cebova M. Female prediabetic rats are protected from vascular dysfunction: The role of nitroso and sulfide signaling. Biol. Res. 2024;57:91. doi: 10.1186/s40659-024-00575-1. PubMed DOI PMC

Cacanyiova S., Golas S., Zemancikova A., Majzunova M., Cebova M., Malinska H., Huttl M., Markova I., Berenyiova A. The Vasoactive Role of Perivascular Adipose Tissue and the Sulfide Signaling Pathway in a Nonobese Model of Metabolic Syndrome. Biomolecules. 2021;11:108. doi: 10.3390/biom11010108. PubMed DOI PMC

Malinska H., Huttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI

Cucuianu M., Knauer O., Roman S. Alpha 2-antiplasmin, plasminogen activator inhibitor (PAI) and dilute blood clot lysis time in selected disease states. Thromb. Haemost. 1991;66:586–591. PubMed

Deng Z.Y., Shan W.G., Wang S.F., Hu M.M., Chen Y. Effects of astaxanthin on blood coagulation, fibrinolysis and platelet aggregation in hyperlipidemic rats. Pharm. Biol. 2017;55:663–672. doi: 10.1080/13880209.2016.1261905. PubMed DOI PMC

Barale C., Russo I. Influence of Cardiometabolic Risk Factors on Platelet Function. Int. J. Mol. Sci. 2020;21:623. doi: 10.3390/ijms21020623. PubMed DOI PMC

Jones W.L., Ramos C.R., Banerjee A., Moore E.E., Hansen K.C., Coleman J.R., Kelher M., Neeves K.B., Silliman C.C., Di Paola J., et al. Apolipoprotein A-I, elevated in trauma patients, inhibits platelet activation and decreases clot strength. Platelets. 2022;33:1119–1131. doi: 10.1080/09537104.2022.2078488. PubMed DOI PMC

Seixas M.O., Rocha L.C., Carvalho M.B., Menezes J.F., Lyra I.M., Nascimento V.M., Couto R.D., Atta A.M., Reis M.G., Goncalves M.S. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease. Lipids Health Dis. 2010;9:91. doi: 10.1186/1476-511X-9-91. PubMed DOI PMC

Murphy A.J., Bijl N., Yvan-Charvet L., Welch C.B., Bhagwat N., Reheman A., Wang Y., Shaw J.A., Levine R.L., Ni H., et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat. Med. 2013;19:586–594. doi: 10.1038/nm.3150. PubMed DOI PMC

Cui M.Z., Zhao G., Winokur A.L., Laag E., Bydash J.R., Penn M.S., Chisolm G.M., Xu X. Lysophosphatidic acid induction of tissue factor expression in aortic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2003;23:224–230. doi: 10.1161/01.ATV.0000054660.61191.7D. PubMed DOI

Banfi C., Mussoni L., Rise P., Cattaneo M.G., Vicentini L., Battaini F., Galli C., Tremoli E. Very low density lipoprotein-mediated signal transduction and plasminogen activator inhibitor type 1 in cultured HepG2 cells. Circ. Res. 1999;85:208–217. doi: 10.1161/01.RES.85.2.208. PubMed DOI

Zheng Z., Nakamura K., Gershbaum S., Wang X., Thomas S., Bessler M., Schrope B., Krikhely A., Liu R.M., Ozcan L., et al. Interacting hepatic PAI-1/tPA gene regulatory pathways influence impaired fibrinolysis severity in obesity. J. Clin. Investig. 2020;130:4348–4359. doi: 10.1172/JCI135919. PubMed DOI PMC

Slatter D.A., Percy C.L., Allen-Redpath K., Gajsiewicz J.M., Brooks N.J., Clayton A., Tyrrell V.J., Rosas M., Lauder S.N., Watson A., et al. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies. JCI Insight. 2018;3:e98459. doi: 10.1172/jci.insight.98459. PubMed DOI PMC

Hur W.S., King K.C., Patel Y.N., Nguyen Y.V., Wei Z., Yang Y., Juang L.J., Leung J., Kastrup C.J., Wolberg A.S., et al. Elimination of fibrin polymer formation or crosslinking, but not fibrinogen deficiency, is protective against diet-induced obesity and associated pathologies. J. Thromb. Haemost. 2022;20:2873–2886. doi: 10.1111/jth.15877. PubMed DOI PMC

Iwaki T., Arakawa T., Sandoval-Cooper M.J., Smith D.L., Donahue D., Ploplis V.A., Umemura K., Castellino F.J. Plasminogen Deficiency Significantly Reduces Vascular Wall Disease in a Murine Model of Type IIa Hypercholesterolemia. Biomedicines. 2021;9:1832. doi: 10.3390/biomedicines9121832. PubMed DOI PMC

Rodriguez M., Zheng Z. Connecting impaired fibrinolysis and dyslipidemia. Res. Pract. Thromb. Haemost. 2024;8:102394. doi: 10.1016/j.rpth.2024.102394. PubMed DOI PMC

Kelem A., Adane T., Shiferaw E. Insulin Resistance-Induced Platelet Hyperactivity and a Potential Biomarker Role of Platelet Parameters: A Narrative Review. Diabetes Metab. Syndr. Obes. 2023;16:2843–2853. doi: 10.2147/DMSO.S425469. PubMed DOI PMC

Huttl M., Markova I., Miklankova D., Zapletalova I., Kujal P., Silhavy J., Pravenec M., Malinska H. Hypolipidemic and insulin sensitizing effects of salsalate beyond suppressing inflammation in a prediabetic rat model. Front. Pharmacol. 2023;14:1117683. doi: 10.3389/fphar.2023.1117683. PubMed DOI PMC

Gerrits A.J., Gitz E., Koekman C.A., Visseren F.L., van Haeften T.W., Akkerman J.W. Induction of insulin resistance by the adipokines resistin, leptin, plasminogen activator inhibitor-1 and retinol binding protein 4 in human megakaryocytes. Haematologica. 2012;97:1149–1157. doi: 10.3324/haematol.2011.054916. PubMed DOI PMC

Alamri B.N., Bahabri A., Aldereihim A.A., Alabduljabbar M., Alsubaie M.M., Alnaqeb D., Almogbel E., Metias N.S., Alotaibi O.A., Al-Rubeaan K. Hyperglycemia effect on red blood cells indices. Eur. Rev. Med. Pharmacol. Sci. 2019;23:2139–2150. PubMed

Krisnamurti D.G.B., Purwaningsih E.H., Tarigan T.J.E., Soetikno V., Louisa M. Hematological indices and their correlation with glucose control parameters in a prediabetic rat model. Vet. World. 2022;15:672–678. doi: 10.14202/vetworld.2022.672-678. PubMed DOI PMC

Schafer K., Konstantinides S. Adipokines and thrombosis. Clin. Exp. Pharmacol. Physiol. 2011;38:864–871. doi: 10.1111/j.1440-1681.2011.05589.x. PubMed DOI

Bobbert P., Eisenreich A., Weithauser A., Schultheiss H.P., Rauch U. Leptin and resistin induce increased procoagulability in diabetes mellitus. Cytokine. 2011;56:332–337. doi: 10.1016/j.cyto.2011.05.019. PubMed DOI

Valentini A., Cardillo C., Della Morte D., Tesauro M. The Role of Perivascular Adipose Tissue in the Pathogenesis of Endothelial Dysfunction in Cardiovascular Diseases and Type 2 Diabetes Mellitus. Biomedicines. 2023;11:3006. doi: 10.3390/biomedicines11113006. PubMed DOI PMC

Ahmed A., Bibi A., Valoti M., Fusi F. Perivascular Adipose Tissue and Vascular Smooth Muscle Tone: Friends or Foes? Cells. 2023;12:1196. doi: 10.3390/cells12081196. PubMed DOI PMC

Jansen H.J., Vervoort G.M., van der Graaf M., Stienstra R., Tack C.J. Liver fat content is linked to inflammatory changes in subcutaneous adipose tissue in type 2 diabetes patients. Clin. Endocrinol. 2013;79:661–666. doi: 10.1111/cen.12105. PubMed DOI

Alsharoh H., Ismaiel A., Leucuta D.C., Popa S.L., Dumitrascu D.L. Plasminogen Activator Inhibitor-1 Levels in Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. J. Gastrointest. Liver Dis. 2022;31:206–214. doi: 10.15403/jgld-4091. PubMed DOI

Palmisano B.T., Zhu L., Eckel R.H., Stafford J.M. Sex differences in lipid and lipoprotein metabolism. Mol. Metab. 2018;15:45–55. doi: 10.1016/j.molmet.2018.05.008. PubMed DOI PMC

Liu T., Zhang L., Joo D., Sun S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC

Mussbacher M., Salzmann M., Brostjan C., Hoesel B., Schoergenhofer C., Datler H., Hohensinner P., Basilio J., Petzelbauer P., Assinger A., et al. Cell Type-Specific Roles of NF-kappaB Linking Inflammation and Thrombosis. Front. Immunol. 2019;10:85. doi: 10.3389/fimmu.2019.00085. PubMed DOI PMC

Sabetta A., Lombardi L., Stefanini L. Sex differences at the platelet-vascular interface. Intern. Emerg. Med. 2022;17:1267–1276. doi: 10.1007/s11739-022-02994-y. PubMed DOI PMC

Mohamad N.V., Wong S.K., Hasan W.N.W., Jolly J.J., Nur-Farhana M.F., Irma-Nirwana S., Chin K.Y. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male. 2019;22:129–140. doi: 10.1080/13685538.2018.1482487. PubMed DOI

Tamura Y., Kawao N., Okada K., Yano M., Okumoto K., Matsuo O., Kaji H. Plasminogen activator inhibitor-1 is involved in streptozotocin-induced bone loss in female mice. Diabetes. 2013;62:3170–3179. doi: 10.2337/db12-1552. PubMed DOI PMC

Xing D., Nozell S., Chen Y.F., Hage F., Oparil S. Estrogen and mechanisms of vascular protection. Arterioscler. Thromb. Vasc. Biol. 2009;29:289–295. doi: 10.1161/ATVBAHA.108.182279. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...