Visceral Adipose Tissue Inflammation and Vascular Complications in a Rat Model with Severe Dyslipidemia: Sex Differences and PAI-1 Tissue Involvement
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IKEM, 00023001
The Ministry of Health of the Czech Republic
INTER-EXCELLENCE II, LUASK22012
The Ministry of Education, Younth and Sports of the Czech Republic
SK-CZ-RD-20-0102
The Slovak Research and Development Agency
PubMed
39858414
PubMed Central
PMC11763299
DOI
10.3390/biom15010019
PII: biom15010019
Knihovny.cz E-resources
- Keywords
- cardiovascular disease, hypertriglyceridemia, inflammation, perivascular adipose tissue, plasminogen activator inhibitor-1, visceral adipose tissue,
- MeSH
- Dyslipidemias * metabolism pathology complications genetics MeSH
- Plasminogen Activator Inhibitor 1 * metabolism genetics MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Intra-Abdominal Fat * metabolism pathology MeSH
- Sex Characteristics MeSH
- Inflammation * metabolism pathology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Plasminogen Activator Inhibitor 1 * MeSH
We investigated the sex-dependent effects of inflammatory responses in visceral adipose tissue (VAT) and perivascular adipose tissue (PVAT), as well as hematological status, in relation to cardiovascular disorders associated with prediabetes. Using male and female hereditary hypertriglyceridemic (HHTg) rats-a nonobese prediabetic model featuring dyslipidemia, hepatic steatosis, and insulin resistance-we found that HHTg females exhibited more pronounced hypertriglyceridemia than males, while HHTg males had higher non-fasting glucose levels. Additionally, HHTg females had higher platelet counts, larger platelet volumes, and lower antithrombin inhibitory activity. Regarding low-grade chronic inflammation, HHTg males exhibited increased serum leptin and leukocyte levels, while females had increased serum interleukin-6 (IL-6). Both sexes had increased circulating plasminogen activator inhibitor-1 (PAI-1), higher PAI-1 gene expression in VAT and PVAT, and elevated intercellular adhesion molecule-1 (ICAM-1) gene expression in the aorta, contributing to endothelial dysfunction in the HHTg strain. However, HHTg females had lower tumor necrosis factor alpha (TNFα) gene expression in the aorta. Severe dyslipidemia in this prediabetic model was associated with hypercoagulation and low-grade chronic inflammation. The increase in PAI-1 expression in both VAT and PVAT seems to indicate a link between inflammation and vascular dysfunction. Despite the more pronounced dyslipidemia and procoagulation status in females, their milder inflammatory response may reflect an association between reduced cardiovascular damage and prediabetes.
See more in PubMed
Zafar U., Khaliq S., Ahmad H.U., Manzoor S., Lone K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones. 2018;17:299–313. doi: 10.1007/s42000-018-0051-3. PubMed DOI
Broni E.K., Ndumele C.E., Echouffo-Tcheugui J.B., Kalyani R.R., Bennett W.L., Michos E.D. The Diabetes-Cardiovascular Connection in Women: Understanding the Known Risks, Outcomes, and Implications for Care. Curr. Diabetes Rep. 2022;22:11–25. doi: 10.1007/s11892-021-01444-x. PubMed DOI
Russo I. The prothrombotic tendency in metabolic syndrome: Focus on the potential mechanisms involved in impaired haemostasis and fibrinolytic balance. Scientifica. 2012;2012:525374. doi: 10.6064/2012/525374. PubMed DOI PMC
Zhang Z., Rodriguez M., Zheng Z. Clot or Not? Reviewing the Reciprocal Regulation between Lipids and Blood Clotting. Arterioscler. Thromb. Vasc. Biol. 2024;44:533–544. doi: 10.1161/ATVBAHA.123.318286. PubMed DOI PMC
Gugliucci A. Biomarkers of dysfunctional visceral fat. Adv. Clin. Chem. 2022;109:1–30. PubMed
Ragino Y.I., Stakhneva E.M., Polonskaya Y.V., Kashtanova E.V. The Role of Secretory Activity Molecules of Visceral Adipocytes in Abdominal Obesity in the Development of Cardiovascular Disease: A Review. Biomolecules. 2020;10:374. doi: 10.3390/biom10030374. PubMed DOI PMC
Kaji H. Adipose Tissue-Derived Plasminogen Activator Inhibitor-1 Function and Regulation. Compr. Physiol. 2016;6:1873–1896. PubMed
Morrow G.B., Mutch N.J. Past, Present, and Future Perspectives of Plasminogen Activator Inhibitor 1 (PAI-1) Semin. Thromb. Hemost. 2023;49:305–313. doi: 10.1055/s-0042-1758791. PubMed DOI
Zicha J., Pechanova O., Cacanyiova S., Cebova M., Kristek F., Torok J., Simko F., Dobesova Z., Kunes J. Hereditary hypertriglyceridemic rat: A suitable model of cardiovascular disease and metabolic syndrome? Physiol. Res. 2006;55((Suppl. S1)):S49–S63. doi: 10.33549/physiolres.930000.55.S1.49. PubMed DOI
Vrana A., Kazdova L. The hereditary hypertriglyceridemic nonobese rat: An experimental model of human hypertriglyceridemia. Transplant. Proc. 1990;22:2579. PubMed
Cacanyiova S., Berenyiova A., Malinska H., Huttl M., Markova I., Aydemir B.G., Garaiova V., Cebova M. Female prediabetic rats are protected from vascular dysfunction: The role of nitroso and sulfide signaling. Biol. Res. 2024;57:91. doi: 10.1186/s40659-024-00575-1. PubMed DOI PMC
Cacanyiova S., Golas S., Zemancikova A., Majzunova M., Cebova M., Malinska H., Huttl M., Markova I., Berenyiova A. The Vasoactive Role of Perivascular Adipose Tissue and the Sulfide Signaling Pathway in a Nonobese Model of Metabolic Syndrome. Biomolecules. 2021;11:108. doi: 10.3390/biom11010108. PubMed DOI PMC
Malinska H., Huttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI
Cucuianu M., Knauer O., Roman S. Alpha 2-antiplasmin, plasminogen activator inhibitor (PAI) and dilute blood clot lysis time in selected disease states. Thromb. Haemost. 1991;66:586–591. PubMed
Deng Z.Y., Shan W.G., Wang S.F., Hu M.M., Chen Y. Effects of astaxanthin on blood coagulation, fibrinolysis and platelet aggregation in hyperlipidemic rats. Pharm. Biol. 2017;55:663–672. doi: 10.1080/13880209.2016.1261905. PubMed DOI PMC
Barale C., Russo I. Influence of Cardiometabolic Risk Factors on Platelet Function. Int. J. Mol. Sci. 2020;21:623. doi: 10.3390/ijms21020623. PubMed DOI PMC
Jones W.L., Ramos C.R., Banerjee A., Moore E.E., Hansen K.C., Coleman J.R., Kelher M., Neeves K.B., Silliman C.C., Di Paola J., et al. Apolipoprotein A-I, elevated in trauma patients, inhibits platelet activation and decreases clot strength. Platelets. 2022;33:1119–1131. doi: 10.1080/09537104.2022.2078488. PubMed DOI PMC
Seixas M.O., Rocha L.C., Carvalho M.B., Menezes J.F., Lyra I.M., Nascimento V.M., Couto R.D., Atta A.M., Reis M.G., Goncalves M.S. Levels of high-density lipoprotein cholesterol (HDL-C) among children with steady-state sickle cell disease. Lipids Health Dis. 2010;9:91. doi: 10.1186/1476-511X-9-91. PubMed DOI PMC
Murphy A.J., Bijl N., Yvan-Charvet L., Welch C.B., Bhagwat N., Reheman A., Wang Y., Shaw J.A., Levine R.L., Ni H., et al. Cholesterol efflux in megakaryocyte progenitors suppresses platelet production and thrombocytosis. Nat. Med. 2013;19:586–594. doi: 10.1038/nm.3150. PubMed DOI PMC
Cui M.Z., Zhao G., Winokur A.L., Laag E., Bydash J.R., Penn M.S., Chisolm G.M., Xu X. Lysophosphatidic acid induction of tissue factor expression in aortic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2003;23:224–230. doi: 10.1161/01.ATV.0000054660.61191.7D. PubMed DOI
Banfi C., Mussoni L., Rise P., Cattaneo M.G., Vicentini L., Battaini F., Galli C., Tremoli E. Very low density lipoprotein-mediated signal transduction and plasminogen activator inhibitor type 1 in cultured HepG2 cells. Circ. Res. 1999;85:208–217. doi: 10.1161/01.RES.85.2.208. PubMed DOI
Zheng Z., Nakamura K., Gershbaum S., Wang X., Thomas S., Bessler M., Schrope B., Krikhely A., Liu R.M., Ozcan L., et al. Interacting hepatic PAI-1/tPA gene regulatory pathways influence impaired fibrinolysis severity in obesity. J. Clin. Investig. 2020;130:4348–4359. doi: 10.1172/JCI135919. PubMed DOI PMC
Slatter D.A., Percy C.L., Allen-Redpath K., Gajsiewicz J.M., Brooks N.J., Clayton A., Tyrrell V.J., Rosas M., Lauder S.N., Watson A., et al. Enzymatically oxidized phospholipids restore thrombin generation in coagulation factor deficiencies. JCI Insight. 2018;3:e98459. doi: 10.1172/jci.insight.98459. PubMed DOI PMC
Hur W.S., King K.C., Patel Y.N., Nguyen Y.V., Wei Z., Yang Y., Juang L.J., Leung J., Kastrup C.J., Wolberg A.S., et al. Elimination of fibrin polymer formation or crosslinking, but not fibrinogen deficiency, is protective against diet-induced obesity and associated pathologies. J. Thromb. Haemost. 2022;20:2873–2886. doi: 10.1111/jth.15877. PubMed DOI PMC
Iwaki T., Arakawa T., Sandoval-Cooper M.J., Smith D.L., Donahue D., Ploplis V.A., Umemura K., Castellino F.J. Plasminogen Deficiency Significantly Reduces Vascular Wall Disease in a Murine Model of Type IIa Hypercholesterolemia. Biomedicines. 2021;9:1832. doi: 10.3390/biomedicines9121832. PubMed DOI PMC
Rodriguez M., Zheng Z. Connecting impaired fibrinolysis and dyslipidemia. Res. Pract. Thromb. Haemost. 2024;8:102394. doi: 10.1016/j.rpth.2024.102394. PubMed DOI PMC
Kelem A., Adane T., Shiferaw E. Insulin Resistance-Induced Platelet Hyperactivity and a Potential Biomarker Role of Platelet Parameters: A Narrative Review. Diabetes Metab. Syndr. Obes. 2023;16:2843–2853. doi: 10.2147/DMSO.S425469. PubMed DOI PMC
Huttl M., Markova I., Miklankova D., Zapletalova I., Kujal P., Silhavy J., Pravenec M., Malinska H. Hypolipidemic and insulin sensitizing effects of salsalate beyond suppressing inflammation in a prediabetic rat model. Front. Pharmacol. 2023;14:1117683. doi: 10.3389/fphar.2023.1117683. PubMed DOI PMC
Gerrits A.J., Gitz E., Koekman C.A., Visseren F.L., van Haeften T.W., Akkerman J.W. Induction of insulin resistance by the adipokines resistin, leptin, plasminogen activator inhibitor-1 and retinol binding protein 4 in human megakaryocytes. Haematologica. 2012;97:1149–1157. doi: 10.3324/haematol.2011.054916. PubMed DOI PMC
Alamri B.N., Bahabri A., Aldereihim A.A., Alabduljabbar M., Alsubaie M.M., Alnaqeb D., Almogbel E., Metias N.S., Alotaibi O.A., Al-Rubeaan K. Hyperglycemia effect on red blood cells indices. Eur. Rev. Med. Pharmacol. Sci. 2019;23:2139–2150. PubMed
Krisnamurti D.G.B., Purwaningsih E.H., Tarigan T.J.E., Soetikno V., Louisa M. Hematological indices and their correlation with glucose control parameters in a prediabetic rat model. Vet. World. 2022;15:672–678. doi: 10.14202/vetworld.2022.672-678. PubMed DOI PMC
Schafer K., Konstantinides S. Adipokines and thrombosis. Clin. Exp. Pharmacol. Physiol. 2011;38:864–871. doi: 10.1111/j.1440-1681.2011.05589.x. PubMed DOI
Bobbert P., Eisenreich A., Weithauser A., Schultheiss H.P., Rauch U. Leptin and resistin induce increased procoagulability in diabetes mellitus. Cytokine. 2011;56:332–337. doi: 10.1016/j.cyto.2011.05.019. PubMed DOI
Valentini A., Cardillo C., Della Morte D., Tesauro M. The Role of Perivascular Adipose Tissue in the Pathogenesis of Endothelial Dysfunction in Cardiovascular Diseases and Type 2 Diabetes Mellitus. Biomedicines. 2023;11:3006. doi: 10.3390/biomedicines11113006. PubMed DOI PMC
Ahmed A., Bibi A., Valoti M., Fusi F. Perivascular Adipose Tissue and Vascular Smooth Muscle Tone: Friends or Foes? Cells. 2023;12:1196. doi: 10.3390/cells12081196. PubMed DOI PMC
Jansen H.J., Vervoort G.M., van der Graaf M., Stienstra R., Tack C.J. Liver fat content is linked to inflammatory changes in subcutaneous adipose tissue in type 2 diabetes patients. Clin. Endocrinol. 2013;79:661–666. doi: 10.1111/cen.12105. PubMed DOI
Alsharoh H., Ismaiel A., Leucuta D.C., Popa S.L., Dumitrascu D.L. Plasminogen Activator Inhibitor-1 Levels in Non-alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. J. Gastrointest. Liver Dis. 2022;31:206–214. doi: 10.15403/jgld-4091. PubMed DOI
Palmisano B.T., Zhu L., Eckel R.H., Stafford J.M. Sex differences in lipid and lipoprotein metabolism. Mol. Metab. 2018;15:45–55. doi: 10.1016/j.molmet.2018.05.008. PubMed DOI PMC
Liu T., Zhang L., Joo D., Sun S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017;2:17023. doi: 10.1038/sigtrans.2017.23. PubMed DOI PMC
Mussbacher M., Salzmann M., Brostjan C., Hoesel B., Schoergenhofer C., Datler H., Hohensinner P., Basilio J., Petzelbauer P., Assinger A., et al. Cell Type-Specific Roles of NF-kappaB Linking Inflammation and Thrombosis. Front. Immunol. 2019;10:85. doi: 10.3389/fimmu.2019.00085. PubMed DOI PMC
Sabetta A., Lombardi L., Stefanini L. Sex differences at the platelet-vascular interface. Intern. Emerg. Med. 2022;17:1267–1276. doi: 10.1007/s11739-022-02994-y. PubMed DOI PMC
Mohamad N.V., Wong S.K., Hasan W.N.W., Jolly J.J., Nur-Farhana M.F., Irma-Nirwana S., Chin K.Y. The relationship between circulating testosterone and inflammatory cytokines in men. Aging Male. 2019;22:129–140. doi: 10.1080/13685538.2018.1482487. PubMed DOI
Tamura Y., Kawao N., Okada K., Yano M., Okumoto K., Matsuo O., Kaji H. Plasminogen activator inhibitor-1 is involved in streptozotocin-induced bone loss in female mice. Diabetes. 2013;62:3170–3179. doi: 10.2337/db12-1552. PubMed DOI PMC
Xing D., Nozell S., Chen Y.F., Hage F., Oparil S. Estrogen and mechanisms of vascular protection. Arterioscler. Thromb. Vasc. Biol. 2009;29:289–295. doi: 10.1161/ATVBAHA.108.182279. PubMed DOI PMC