Adverse Effects of Methylglyoxal on Transcriptome and Metabolic Changes in Visceral Adipose Tissue in a Prediabetic Rat Model

. 2020 Aug 31 ; 9 (9) : . [epub] 20200831

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32878255

Grantová podpora
Institute for Clinical and Experimental Medicine - IKEM, IN 00023001 Ministerstvo Zdravotnictví Ceské Republiky
RVO VFN64165, General University Hospital in Prague Ministerstvo Zdravotnictví Ceské Republiky

Excessive methylglyoxal (MG) production contributes to metabolic and vascular changes by increasing inflammatory processes, disturbing regulatory mechanisms and exacerbating tissue dysfunction. MG accumulation in adipocytes leads to structural and functional changes. We used transcriptome analysis to investigate the effect of MG on metabolic changes in the visceral adipose tissue of hereditary hypetriglyceridaemic rats, a non-obese model of metabolic syndrome. Compared to controls, 4-week intragastric MG administration impaired glucose tolerance (p < 0.05) and increased glycaemia (p < 0.01) and serum levels of MCP-1 and TNFα (p < 0.05), but had no effect on serum adiponectin or leptin. Adipose tissue insulin sensitivity and lipolysis were impaired (p < 0.05) in MG-treated rats. In addition, MG reduced the expression of transcription factor Nrf2 (p < 0.01), which controls antioxidant and lipogenic genes. Increased expression of Mcp-1 and TNFα (p < 0.05) together with activation of the SAPK/JNK signaling pathway can promote chronic inflammation in adipose tissue. Transcriptome network analysis revealed the over-representation of genes involved in insulin signaling (Irs1, Igf2, Ide), lipid metabolism (Nr1d1, Lpin1, Lrpap1) and angiogenesis (Dusp10, Tp53inp1).

Zobrazit více v PubMed

Bodis K., Roden M. Energy metabolism of white adipose tissue and insulin resistance in humans. Eur. J. Clin. Investig. 2018;48:e13017. doi: 10.1111/eci.13017. PubMed DOI

Lopes H.F., Correa-Giannella M.L., Consolim-Colombo F.M., Egan B.M. Visceral adiposity syndrome. Diabetol. Metab. Syndr. 2016;8:40. doi: 10.1186/s13098-016-0156-2. PubMed DOI PMC

Matafome P., Rodrigues T., Seica R. Glycation and hypoxia: Two key factors for adipose tissue dysfunction. Curr. Med. Chem. 2015;22:2417–2437. doi: 10.2174/0929867322666150209155633. PubMed DOI

Matafome P., Santos-Silva D., Crisostomo J., Rodrigues T., Rodrigues L., Sena C.M., Pereira P., Seica R. Methylglyoxal causes structural and functional alterations in adipose tissue independently of obesity. Arch. Physiol. Biochem. 2012;118:58–68. doi: 10.3109/13813455.2012.658065. PubMed DOI

Rodrigues T., Matafome P., Sereno J., Almeida J., Castelhano J., Gamas L., Neves C., Goncalves S., Carvalho C., Arslanagic A., et al. Methylglyoxal-induced glycation changes adipose tissue vascular architecture, flow and expansion, leading to insulin resistance. Sci. Rep. 2017;7:1698. doi: 10.1038/s41598-017-01730-3. PubMed DOI PMC

Nigro C., Leone A., Raciti G.A., Longo M., Mirra P., Formisano P., Beguinot F., Miele C. Methylglyoxal-glyoxalase 1 balance: The root of vascular damage. Int. J. Mol. Sci. 2017;18:188. doi: 10.3390/ijms18010188. PubMed DOI PMC

Schalkwijk C.G., Stehouwer C.D.A. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol. Rev. 2020;100:407–461. doi: 10.1152/physrev.00001.2019. PubMed DOI

Tikellis C., Pickering R.J., Tsorotes D., Huet O., Cooper M.E., Jandeleit-Dahm K., Thomas M.C. Dicarbonyl stress in the absence of hyperglycemia increases endothelial inflammation and atherogenesis similar to that observed in diabetes. Diabetes. 2014;63:3915–3925. doi: 10.2337/db13-0932. PubMed DOI

Fiory F., Lombardi A., Miele C., Giudicelli J., Beguinot F., Van Obberghen E. Methylglyoxal impairs insulin signalling and insulin action on glucose-induced insulin secretion in the pancreatic beta cell line INS-1E. Diabetologia. 2011;54:2941–2952. doi: 10.1007/s00125-011-2280-8. PubMed DOI

Peng Z., Yang X., Qin J., Ye K., Wang X., Shi H., Jiang M., Liu X., Lu X. Glyoxalase-1 overexpression reverses defective proangiogenic function of diabetic adipose-derived stem cells in streptozotocin-induced diabetic mice model of critical limb ischemia. Stem Cells Transl. Med. 2017;6:261–271. doi: 10.5966/sctm.2015-0380. PubMed DOI PMC

Masania J., Malczewska-Malec M., Razny U., Goralska J., Zdzienicka A., Kiec-Wilk B., Gruca A., Stancel-Mozwillo J., Dembinska-Kiec A., Rabbani N., et al. Dicarbonyl stress in clinical obesity. Glycoconj. J. 2016;33:581–589. doi: 10.1007/s10719-016-9692-0. PubMed DOI PMC

Zemva J., Pfaff D., Groener J.B., Fleming T., Herzig S., Teleman A., Nawroth P.P., Tyedmers J. Effects of the reactive metabolite methylglyoxal on cellular signalling, insulin action and metabolism—What we know in mammals and what we can learn from yeast. Exp. Clin. Endocrinol. Diabetes. 2019;127:203–214. doi: 10.1055/s-0043-122382. PubMed DOI

Vrana A., Kazdova L. The hereditary hypertriglyceridemic nonobese rat: An experimental model of human hypertriglyceridemia. Transplant. Proc. 1990;22:2579. PubMed

Malinska H., Skop V., Trnovska J., Markova I., Svoboda P., Kazdova L., Haluzik M. Metformin attenuates myocardium dicarbonyl stress induced by chronic hypertriglyceridemia. Physiol. Res. 2018;67:181–189. doi: 10.33549/physiolres.933606. PubMed DOI

Thornalley P.J., Langborg A., Minhas H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999;344:109–116. doi: 10.1042/bj3440109. PubMed DOI PMC

Malinska H., Huttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI

Eder K. Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B Biomed. Appl. 1995;671:113–131. doi: 10.1016/0378-4347(95)00142-6. PubMed DOI

Markova I., Huttl M., Oliyarnyk O., Kacerova T., Haluzik M., Kacer P., Seda O., Malinska H. The effect of dicarbonyl stress on the development of kidney dysfunction in metabolic syndrome—A transcriptomic and proteomic approach. Nutr. Metab. 2019;16:51. doi: 10.1186/s12986-019-0376-1. PubMed DOI PMC

Kramer A., Green J., Pollard J., Jr., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC

Yamamoto M., Kensler T.W., Motohashi H. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 2018;98:1169–1203. doi: 10.1152/physrev.00023.2017. PubMed DOI PMC

Wang Z., Zuo Z., Li L., Ren S., Gao T., Fu J., Hou Y., Chen Y., Pi J. Nrf2 in adipocytes. Arch. Pharm. Res. 2020;43:350–360. doi: 10.1007/s12272-020-01227-0. PubMed DOI

Wen J., Cai X., Zhang J., Jiang J., Li W., Liu G., Wang M., Gaisano H.Y., Pan Y., He Y. Relation of adipose tissue insulin resistance to prediabetes. Endocrine. 2020;68:93–102. doi: 10.1007/s12020-020-02186-8. PubMed DOI

Schneider K.S., Chan J.Y. Emerging role of Nrf2 in adipocytes and adipose biology. Adv. Nutr. 2013;4:62–66. doi: 10.3945/an.112.003103. PubMed DOI PMC

Pelikanova T., Kazdova L., Chvojkova S., Base J. Serum phospholipid fatty acid composition and insulin action in type 2 diabetic patients. Metabolism. 2001;50:1472–1478. PubMed

Iggman D., Arnlov J., Vessby B., Cederholm T., Sjogren P., Riserus U. Adipose tissue fatty acids and insulin sensitivity in elderly men. Diabetologia. 2010;53:850–857. doi: 10.1007/s00125-010-1669-0. PubMed DOI

Poledne R., Malinska H., Kubatova H., Fronek J., Thieme F., Kauerova S., Lesna I.K. Polarization of macrophages in human adipose tissue is related to the fatty acid spectrum in membrane phospholipids. Nutrients. 2019;12:8. doi: 10.3390/nu12010008. PubMed DOI PMC

Kim B.R., Lee G.Y., Yu H., Maeng H.J., Oh T.J., Kim K.M., Moon J.H., Lim S., Jang H.C., Choi S.H. Suppression of Nrf2 attenuates adipogenesis and decreases FGF21 expression through PPAR gamma in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2018;497:1149–1153. doi: 10.1016/j.bbrc.2017.01.107. PubMed DOI

Amano S.U., Cohen J.L., Vangala P., Tencerova M., Nicoloro S.M., Yawe J.C., Shen Y., Czech M.P., Aouadi M. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. 2014;19:162–171. doi: 10.1016/j.cmet.2013.11.017. PubMed DOI PMC

Yaribeygi H., Farrokhi F.R., Butler A.E., Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell Physiol. 2019;234:8152–8161. doi: 10.1002/jcp.27603. PubMed DOI

Borst S.E. The role of TNF-alpha in insulin resistance. Endocrine. 2004;23:177–182. doi: 10.1385/ENDO:23:2-3:177. PubMed DOI

Ryden M., Dicker A., van Harmelen V., Hauner H., Brunnberg M., Perbeck L., Lonnqvist F., Arner P. Mapping of early signaling events in tumor necrosis factor-alpha -mediated lipolysis in human fat cells. J. Biol. Chem. 2002;277:1085–1091. doi: 10.1074/jbc.M109498200. PubMed DOI

Hong F.Y., Bao J.F., Hao J., Yu Q., Liu J. Methylglyoxal and advanced glycation end-products promote cytokines expression in peritoneal mesothelial cells via MAPK signaling. Am. J. Med. Sci. 2015;349:105–109. doi: 10.1097/MAJ.0000000000000394. PubMed DOI

Lee K.M., Lee C.Y., Zhang G., Lyu A., Yue K.K.M. The dataset of methylglyoxal activating p38 and p44/42 pathway in osteoclast. Data Brief. 2019;26:104500. doi: 10.1016/j.dib.2019.104500. PubMed DOI PMC

Vlassara H., Uribarri J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr. Diabetes Rep. 2014;14:453. doi: 10.1007/s11892-013-0453-1. PubMed DOI PMC

Cartier A., Lemieux I., Almeras N., Tremblay A., Bergeron J., Despres J.P. Visceral obesity and plasma glucose-insulin homeostasis: Contributions of interleukin-6 and tumor necrosis factor-alpha in men. J. Clin. Endocrinol. Metab. 2008;93:1931–1938. doi: 10.1210/jc.2007-2191. PubMed DOI

Halberg N., Wernstedt-Asterholm I., Scherer P.E. The adipocyte as an endocrine cell. Endocrinol. Metab. Clin. N. Am. 2008;37:753–768. doi: 10.1016/j.ecl.2008.07.002. PubMed DOI PMC

Engin A.B. Adipocyte-macrophage cross-talk in obesity. Adv. Exp. Med. Biol. 2017;960:327–343. PubMed

Lorente-Cebrian S., Gonzalez-Muniesa P., Milagro F.I., Martinez J.A. MicroRNAs and other non-coding RNAs in adipose tissue and obesity: Emerging roles as biomarkers and therapeutic targets. Clin. Sci. 2019;133:23–40. doi: 10.1042/CS20180890. PubMed DOI

Dong H., Cui B., Hao X. MicroRNA22 alleviates inflammation in ischemic stroke via p38 MAPK pathways. Mol. Med. Rep. 2019;20:735–744. PubMed PMC

Phan H.T.N., Sjogren B., Neubig R.R. Human missense mutations in regulator of G protein signaling 2 affect the protein function through multiple mechanisms. Mol. Pharmacol. 2017;92:451–458. doi: 10.1124/mol.117.109215. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace