Adverse Effects of Methylglyoxal on Transcriptome and Metabolic Changes in Visceral Adipose Tissue in a Prediabetic Rat Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
Institute for Clinical and Experimental Medicine - IKEM, IN 00023001
Ministerstvo Zdravotnictví Ceské Republiky
RVO VFN64165, General University Hospital in Prague
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
32878255
PubMed Central
PMC7555565
DOI
10.3390/antiox9090803
PII: antiox9090803
Knihovny.cz E-zdroje
- Klíčová slova
- adipose tissue, insulin resistance, methylglyoxal,
- Publikační typ
- časopisecké články MeSH
Excessive methylglyoxal (MG) production contributes to metabolic and vascular changes by increasing inflammatory processes, disturbing regulatory mechanisms and exacerbating tissue dysfunction. MG accumulation in adipocytes leads to structural and functional changes. We used transcriptome analysis to investigate the effect of MG on metabolic changes in the visceral adipose tissue of hereditary hypetriglyceridaemic rats, a non-obese model of metabolic syndrome. Compared to controls, 4-week intragastric MG administration impaired glucose tolerance (p < 0.05) and increased glycaemia (p < 0.01) and serum levels of MCP-1 and TNFα (p < 0.05), but had no effect on serum adiponectin or leptin. Adipose tissue insulin sensitivity and lipolysis were impaired (p < 0.05) in MG-treated rats. In addition, MG reduced the expression of transcription factor Nrf2 (p < 0.01), which controls antioxidant and lipogenic genes. Increased expression of Mcp-1 and TNFα (p < 0.05) together with activation of the SAPK/JNK signaling pathway can promote chronic inflammation in adipose tissue. Transcriptome network analysis revealed the over-representation of genes involved in insulin signaling (Irs1, Igf2, Ide), lipid metabolism (Nr1d1, Lpin1, Lrpap1) and angiogenesis (Dusp10, Tp53inp1).
Diabetes Centre Institute for Clinical and Experimental Medicine 140 21 Prague Czech Republic
Faculty of Education Department of Biology J Selye University 94501 Komarno Slovakia
Zobrazit více v PubMed
Bodis K., Roden M. Energy metabolism of white adipose tissue and insulin resistance in humans. Eur. J. Clin. Investig. 2018;48:e13017. doi: 10.1111/eci.13017. PubMed DOI
Lopes H.F., Correa-Giannella M.L., Consolim-Colombo F.M., Egan B.M. Visceral adiposity syndrome. Diabetol. Metab. Syndr. 2016;8:40. doi: 10.1186/s13098-016-0156-2. PubMed DOI PMC
Matafome P., Rodrigues T., Seica R. Glycation and hypoxia: Two key factors for adipose tissue dysfunction. Curr. Med. Chem. 2015;22:2417–2437. doi: 10.2174/0929867322666150209155633. PubMed DOI
Matafome P., Santos-Silva D., Crisostomo J., Rodrigues T., Rodrigues L., Sena C.M., Pereira P., Seica R. Methylglyoxal causes structural and functional alterations in adipose tissue independently of obesity. Arch. Physiol. Biochem. 2012;118:58–68. doi: 10.3109/13813455.2012.658065. PubMed DOI
Rodrigues T., Matafome P., Sereno J., Almeida J., Castelhano J., Gamas L., Neves C., Goncalves S., Carvalho C., Arslanagic A., et al. Methylglyoxal-induced glycation changes adipose tissue vascular architecture, flow and expansion, leading to insulin resistance. Sci. Rep. 2017;7:1698. doi: 10.1038/s41598-017-01730-3. PubMed DOI PMC
Nigro C., Leone A., Raciti G.A., Longo M., Mirra P., Formisano P., Beguinot F., Miele C. Methylglyoxal-glyoxalase 1 balance: The root of vascular damage. Int. J. Mol. Sci. 2017;18:188. doi: 10.3390/ijms18010188. PubMed DOI PMC
Schalkwijk C.G., Stehouwer C.D.A. Methylglyoxal, a highly reactive dicarbonyl compound, in diabetes, its vascular complications, and other age-related diseases. Physiol. Rev. 2020;100:407–461. doi: 10.1152/physrev.00001.2019. PubMed DOI
Tikellis C., Pickering R.J., Tsorotes D., Huet O., Cooper M.E., Jandeleit-Dahm K., Thomas M.C. Dicarbonyl stress in the absence of hyperglycemia increases endothelial inflammation and atherogenesis similar to that observed in diabetes. Diabetes. 2014;63:3915–3925. doi: 10.2337/db13-0932. PubMed DOI
Fiory F., Lombardi A., Miele C., Giudicelli J., Beguinot F., Van Obberghen E. Methylglyoxal impairs insulin signalling and insulin action on glucose-induced insulin secretion in the pancreatic beta cell line INS-1E. Diabetologia. 2011;54:2941–2952. doi: 10.1007/s00125-011-2280-8. PubMed DOI
Peng Z., Yang X., Qin J., Ye K., Wang X., Shi H., Jiang M., Liu X., Lu X. Glyoxalase-1 overexpression reverses defective proangiogenic function of diabetic adipose-derived stem cells in streptozotocin-induced diabetic mice model of critical limb ischemia. Stem Cells Transl. Med. 2017;6:261–271. doi: 10.5966/sctm.2015-0380. PubMed DOI PMC
Masania J., Malczewska-Malec M., Razny U., Goralska J., Zdzienicka A., Kiec-Wilk B., Gruca A., Stancel-Mozwillo J., Dembinska-Kiec A., Rabbani N., et al. Dicarbonyl stress in clinical obesity. Glycoconj. J. 2016;33:581–589. doi: 10.1007/s10719-016-9692-0. PubMed DOI PMC
Zemva J., Pfaff D., Groener J.B., Fleming T., Herzig S., Teleman A., Nawroth P.P., Tyedmers J. Effects of the reactive metabolite methylglyoxal on cellular signalling, insulin action and metabolism—What we know in mammals and what we can learn from yeast. Exp. Clin. Endocrinol. Diabetes. 2019;127:203–214. doi: 10.1055/s-0043-122382. PubMed DOI
Vrana A., Kazdova L. The hereditary hypertriglyceridemic nonobese rat: An experimental model of human hypertriglyceridemia. Transplant. Proc. 1990;22:2579. PubMed
Malinska H., Skop V., Trnovska J., Markova I., Svoboda P., Kazdova L., Haluzik M. Metformin attenuates myocardium dicarbonyl stress induced by chronic hypertriglyceridemia. Physiol. Res. 2018;67:181–189. doi: 10.33549/physiolres.933606. PubMed DOI
Thornalley P.J., Langborg A., Minhas H.S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem. J. 1999;344:109–116. doi: 10.1042/bj3440109. PubMed DOI PMC
Malinska H., Huttl M., Oliyarnyk O., Bratova M., Kazdova L. Conjugated linoleic acid reduces visceral and ectopic lipid accumulation and insulin resistance in chronic severe hypertriacylglycerolemia. Nutrition. 2015;31:1045–1051. doi: 10.1016/j.nut.2015.03.011. PubMed DOI
Eder K. Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B Biomed. Appl. 1995;671:113–131. doi: 10.1016/0378-4347(95)00142-6. PubMed DOI
Markova I., Huttl M., Oliyarnyk O., Kacerova T., Haluzik M., Kacer P., Seda O., Malinska H. The effect of dicarbonyl stress on the development of kidney dysfunction in metabolic syndrome—A transcriptomic and proteomic approach. Nutr. Metab. 2019;16:51. doi: 10.1186/s12986-019-0376-1. PubMed DOI PMC
Kramer A., Green J., Pollard J., Jr., Tugendreich S. Causal analysis approaches in ingenuity pathway analysis. Bioinformatics. 2014;30:523–530. doi: 10.1093/bioinformatics/btt703. PubMed DOI PMC
Yamamoto M., Kensler T.W., Motohashi H. The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 2018;98:1169–1203. doi: 10.1152/physrev.00023.2017. PubMed DOI PMC
Wang Z., Zuo Z., Li L., Ren S., Gao T., Fu J., Hou Y., Chen Y., Pi J. Nrf2 in adipocytes. Arch. Pharm. Res. 2020;43:350–360. doi: 10.1007/s12272-020-01227-0. PubMed DOI
Wen J., Cai X., Zhang J., Jiang J., Li W., Liu G., Wang M., Gaisano H.Y., Pan Y., He Y. Relation of adipose tissue insulin resistance to prediabetes. Endocrine. 2020;68:93–102. doi: 10.1007/s12020-020-02186-8. PubMed DOI
Schneider K.S., Chan J.Y. Emerging role of Nrf2 in adipocytes and adipose biology. Adv. Nutr. 2013;4:62–66. doi: 10.3945/an.112.003103. PubMed DOI PMC
Pelikanova T., Kazdova L., Chvojkova S., Base J. Serum phospholipid fatty acid composition and insulin action in type 2 diabetic patients. Metabolism. 2001;50:1472–1478. PubMed
Iggman D., Arnlov J., Vessby B., Cederholm T., Sjogren P., Riserus U. Adipose tissue fatty acids and insulin sensitivity in elderly men. Diabetologia. 2010;53:850–857. doi: 10.1007/s00125-010-1669-0. PubMed DOI
Poledne R., Malinska H., Kubatova H., Fronek J., Thieme F., Kauerova S., Lesna I.K. Polarization of macrophages in human adipose tissue is related to the fatty acid spectrum in membrane phospholipids. Nutrients. 2019;12:8. doi: 10.3390/nu12010008. PubMed DOI PMC
Kim B.R., Lee G.Y., Yu H., Maeng H.J., Oh T.J., Kim K.M., Moon J.H., Lim S., Jang H.C., Choi S.H. Suppression of Nrf2 attenuates adipogenesis and decreases FGF21 expression through PPAR gamma in 3T3-L1 cells. Biochem. Biophys. Res. Commun. 2018;497:1149–1153. doi: 10.1016/j.bbrc.2017.01.107. PubMed DOI
Amano S.U., Cohen J.L., Vangala P., Tencerova M., Nicoloro S.M., Yawe J.C., Shen Y., Czech M.P., Aouadi M. Local proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab. 2014;19:162–171. doi: 10.1016/j.cmet.2013.11.017. PubMed DOI PMC
Yaribeygi H., Farrokhi F.R., Butler A.E., Sahebkar A. Insulin resistance: Review of the underlying molecular mechanisms. J. Cell Physiol. 2019;234:8152–8161. doi: 10.1002/jcp.27603. PubMed DOI
Borst S.E. The role of TNF-alpha in insulin resistance. Endocrine. 2004;23:177–182. doi: 10.1385/ENDO:23:2-3:177. PubMed DOI
Ryden M., Dicker A., van Harmelen V., Hauner H., Brunnberg M., Perbeck L., Lonnqvist F., Arner P. Mapping of early signaling events in tumor necrosis factor-alpha -mediated lipolysis in human fat cells. J. Biol. Chem. 2002;277:1085–1091. doi: 10.1074/jbc.M109498200. PubMed DOI
Hong F.Y., Bao J.F., Hao J., Yu Q., Liu J. Methylglyoxal and advanced glycation end-products promote cytokines expression in peritoneal mesothelial cells via MAPK signaling. Am. J. Med. Sci. 2015;349:105–109. doi: 10.1097/MAJ.0000000000000394. PubMed DOI
Lee K.M., Lee C.Y., Zhang G., Lyu A., Yue K.K.M. The dataset of methylglyoxal activating p38 and p44/42 pathway in osteoclast. Data Brief. 2019;26:104500. doi: 10.1016/j.dib.2019.104500. PubMed DOI PMC
Vlassara H., Uribarri J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr. Diabetes Rep. 2014;14:453. doi: 10.1007/s11892-013-0453-1. PubMed DOI PMC
Cartier A., Lemieux I., Almeras N., Tremblay A., Bergeron J., Despres J.P. Visceral obesity and plasma glucose-insulin homeostasis: Contributions of interleukin-6 and tumor necrosis factor-alpha in men. J. Clin. Endocrinol. Metab. 2008;93:1931–1938. doi: 10.1210/jc.2007-2191. PubMed DOI
Halberg N., Wernstedt-Asterholm I., Scherer P.E. The adipocyte as an endocrine cell. Endocrinol. Metab. Clin. N. Am. 2008;37:753–768. doi: 10.1016/j.ecl.2008.07.002. PubMed DOI PMC
Engin A.B. Adipocyte-macrophage cross-talk in obesity. Adv. Exp. Med. Biol. 2017;960:327–343. PubMed
Lorente-Cebrian S., Gonzalez-Muniesa P., Milagro F.I., Martinez J.A. MicroRNAs and other non-coding RNAs in adipose tissue and obesity: Emerging roles as biomarkers and therapeutic targets. Clin. Sci. 2019;133:23–40. doi: 10.1042/CS20180890. PubMed DOI
Dong H., Cui B., Hao X. MicroRNA22 alleviates inflammation in ischemic stroke via p38 MAPK pathways. Mol. Med. Rep. 2019;20:735–744. PubMed PMC
Phan H.T.N., Sjogren B., Neubig R.R. Human missense mutations in regulator of G protein signaling 2 affect the protein function through multiple mechanisms. Mol. Pharmacol. 2017;92:451–458. doi: 10.1124/mol.117.109215. PubMed DOI
Ovariectomy-Induced Hepatic Lipid and Cytochrome P450 Dysmetabolism Precedes Serum Dyslipidemia